Non-linear gravity from entanglement in CFTs

Felix Haehl (UBC, Vancouver)

Benasque, 26 July 2017

Based on [1705.03026], [w.i.p.]
T. Faulkner, FH, E. Hijano, C. Rabideau, O. Parrikar, M. v. Raamsdonk

Outline

- Part I: Introduction and results
- Part II: Schematic derivation
- Part III: Details
- Part IV: Generalizations

Some questions

How does AdS/CFT work?

\downarrow

What characterizes holographic CFTs?

\downarrow
What characterizes states with a semi-classical gravity dual?
How does $\left\{\begin{array}{c}\downarrow \\ \text { local geometry } \\ \text { gravitational dynamics }\end{array}\right\}$ emerge from CFT data?

Geometry from entanglement

- AdS/CFT realizes entanglement through connected spacetime
- Example: Thermofield double paadacena 01 , van Raamsdonk 101
- CFT_{R} and CFT_{L} non-interacting
- ... but entangled!
- connected bulk (with horizon)

- $\mathrm{ER}=\mathrm{EPR}$ [Maldacena-Susskind ${ }^{\prime} 13 \mid$

- Bulk extremal surfaces probe connectedness

Gravity from entanglement

- So far: purely geometrical picture
- Perturbations of geometry \leftrightarrow perturbations of HRRT surfaces

- Consistent bulk perturbations satisfy Einstein equations
- Can we see the dynamics emerge from consistency with the way entanglement entropy changes?

Setup

- Relative entropy:

$$
\begin{aligned}
S\left(\rho_{A} \| \rho_{A}^{(0)}\right) & =\operatorname{Tr}\left(\rho_{A} \log \rho_{A}-\rho_{A} \log \rho_{A}^{(0)}\right) \\
& =\Delta\left\langle H_{A}^{(0)}\right\rangle-\Delta S_{A} \\
& \geq 0
\end{aligned}
$$

- First law of entanglement: $\delta\left\langle H_{A}^{(0)}\right\rangle-\delta S_{A}=0$
- In AdS/CFT:

$$
\begin{aligned}
S_{A} & =\frac{\operatorname{area}(\widetilde{A})}{4 G_{N}} \quad(\mathrm{HRRT}) \\
\delta\left\langle H_{A}^{(0)}\right\rangle & =\int_{A} d \Sigma^{\mu} \delta\left\langle T_{\mu \nu}\right\rangle \zeta_{A}^{\nu} \sim \int_{A} d \Sigma^{\mu}\left(\delta g_{\mu \nu}^{(\mathrm{FG})}\right) \zeta_{A}^{\nu}
\end{aligned}
$$

Gravity from entanglement

- First law of entanglement: $\delta S_{A}=\delta\left\langle H_{A}\right\rangle$
- linearized Einstein equations \Leftrightarrow first law of entanglement
[Faulkner-Guica-Hartman-Myers-van Raamsdonk '13]
- Entanglement is realized geometrically
- Small changes in entanglement structure are reflected by correct dynamics of the geometry
- Very nice, but: linearized Einstein equations are somewhat limited in really probing dynamics
- No matter couplings/backreaction

Goal: Derive second order Einstein equations (incl. matter coupling) from perturbations of entanglement structure

Setup

- Consider CFT states $\left|\psi_{\lambda}(\varepsilon)\right\rangle$ created by Euclidean path integrals:

$$
\left\langle\varphi_{(0)}(\mathbf{x}) \mid \psi_{\lambda}(\varepsilon)\right\rangle=\int^{\varphi\left(x_{E}^{0}=0\right)=\varphi_{(0)}}[D \varphi] e^{-\int_{-\infty}^{0} d x_{E}^{0} \int d^{d-1} \mathbf{x}\left(\mathcal{L}_{C F T}+\lambda(x ; \varepsilon) \mathcal{O}(x)\right)}
$$

with $\lambda(x, \varepsilon)=\varepsilon \lambda(x)+\mathcal{O}\left(\varepsilon^{2}\right)$

- Euclidean sources $\lambda \Rightarrow$ initial state for Lorentzian evolution
- Sources vanish as $x_{E}^{0} \rightarrow 0$
- Coherent excitations of bulk fields

- Leads to perturbations of entanglement entropy:

$$
S_{A}=S_{A}^{(0)}+\varepsilon \delta S_{A}^{(1)}+\varepsilon^{2} \delta S_{A}^{(2)}+\ldots
$$

- In holography, there will be a dual bulk perturbation theory:

$$
\begin{aligned}
& g=g_{A d S}^{(0)}+\varepsilon \delta g^{(1)}+\varepsilon^{2} \delta g^{(2)}+\ldots \\
& \phi=\quad \varepsilon \delta \phi^{(1)}+\varepsilon^{2} \delta \phi^{(2)}+\ldots
\end{aligned}
$$

Results

(1) For any CFT in an EPI state $\left|\psi_{\lambda}(\varepsilon)\right\rangle$ there exists a bulk

$$
\begin{aligned}
& g=g_{A d S}^{(0)}+\varepsilon \delta g^{(1)}+\varepsilon^{2} \delta g^{(2)}+\ldots \\
& \phi=\quad \varepsilon \delta \phi^{(1)}+\varepsilon^{2} \delta \phi^{(2)}+\ldots
\end{aligned}
$$

that computes S_{A} correctly up to $\mathcal{O}\left(\varepsilon^{2}\right)$.
(2) This geometry satisfies gravitational equations of motion up to $\mathcal{O}\left(\varepsilon^{2}\right)$:

$$
E_{(2)}^{a b}=\frac{1}{2} T_{(2)}^{a b}, \quad T_{(2)}^{a b} \equiv T^{a b}\left(\delta \phi^{(1)}, \delta \phi^{(1)}\right)
$$

(3) For CFTs with " $c=a^{\prime \prime} E_{(2)}^{a b}$ is the (2 ${ }^{\text {nd }}$ order) Einstein tensor, otherwise the equation of motion tensor for an appropriate higher curvature theory of gravity.

Remarks

- What does

$$
g=g_{A d S}^{(0)}+\varepsilon \delta g^{(1)}+\varepsilon^{2} \delta g^{(2)}+\ldots, \quad \phi=\varepsilon \delta \phi^{(1)}+\ldots
$$

have to do with CFT data? Roughly:

- $g_{A d S}^{(0)}(x, z)=\frac{\ell^{2}}{z^{2}}\left(d z^{2}+d x^{\mu} d x_{\mu}\right)$ with $\frac{\pi^{d / 2}}{\Gamma(d / 2)} \frac{\ell^{d-1}}{8 \pi G_{N}}=a$
- $\delta g_{a b}^{(1)}(x, z) \sim \int_{\mathrm{bdry}(y)} K_{a b}^{\mu \nu}(x, z \mid y)\left\langle T_{\mu \nu}(y)\right\rangle$
- $\delta \phi^{(1)}(x, z) \sim \int_{\text {bdry }(y)} K(x, z \mid y)\langle\mathcal{O}(y)\rangle$

Remarks

- What does

$$
g=g_{A d S}^{(0)}+\varepsilon \delta g^{(1)}+\varepsilon^{2} \delta g^{(2)}+\ldots, \quad \phi=\varepsilon \delta \phi^{(1)}+\ldots
$$

have to do with CFT data? Roughly:

- $g_{A d S}^{(0)}(x, z)=\frac{\ell^{2}}{z^{2}}\left(d z^{2}+d x^{\mu} d x_{\mu}\right)$ with $\frac{\pi^{d / 2}}{\Gamma(d / 2)} \frac{\ell^{d-1}}{8 \pi G_{N}}=a$
- $\delta g_{a b}^{(1)}(x, z) \sim \int_{\mathrm{bdry}(y)} K_{a b}^{\mu \nu}(x, z \mid y)\left\langle T_{\mu \nu}(y)\right\rangle$
- $\delta \phi^{(1)}(x, z) \sim \int_{\mathrm{bdry}(y)} K(x, z \mid y)\langle\mathcal{O}(y)\rangle$
- If $d \neq 4$, by " a " and " c " I mean:

$$
\begin{aligned}
S_{A}^{(0)} & =a^{*} \times(\text { universal }) \\
\left\langle T_{a b}(x) T_{c d}(y)\right\rangle & =C_{T} \times(\text { universal })_{a b c d}
\end{aligned}
$$

Remarks (2)

- The result is very universal: CFT need not be holographic
- The bulk geometry is therefore completely auxiliary (c.f., (Faulf(fuer 14))
- If the CFT is holographic, the construction will give an explicit mechanism for the emergence of local bulk dynamics
- How can this be true?
- $\delta^{(2)} S\left(\rho_{A} \| \rho_{A}^{(0)}\right)$ only depends on very little CFT data: c and a
* Reason: ball-shaped A and $\rho=$ vacuum are very simple/symmetric
- In this sense we are only probing/deriving a rather universal "sector" of AdS/CFT
- Nevertheless interesting to see how bulk dynamics emerges: entanglement is not just geometry, but also dynamics

Outline

- Part I: Introduction and results
- Part II: Schematic derivation
- Part III: Details
- Part IV: Generalizations
- Consider (gravitational) Lagrangian $L[\Phi]=\mathcal{L}[\Phi] \boldsymbol{\epsilon}$:

$$
\begin{aligned}
& \delta \mathbf{L}=-\underbrace{\mathbf{E}_{\Phi}}_{\begin{array}{c}
\text { equations } \\
\text { of motion }
\end{array}} \delta \Phi+d \underbrace{\boldsymbol{\theta}(\Phi, \delta \Phi)}_{\begin{array}{c}
\text { presymplectic } \\
\text { potential }
\end{array}} \\
& \underbrace{\boldsymbol{\omega}\left(\delta_{1} \Phi, \delta_{2} \Phi\right)}_{\begin{array}{c}
\text { symplectic } \\
\text { current }
\end{array}}=\delta_{1} \boldsymbol{\theta}\left(\Phi, \delta_{2} \Phi\right)-\delta_{2} \boldsymbol{\theta}\left(\Phi, \delta_{1} \Phi\right)
\end{aligned}
$$

- In gravity, any vector \boldsymbol{X} generates a symmetry \rightarrow Noether currents:

$$
\begin{aligned}
\mathbf{J}_{X} & =\boldsymbol{\theta}\left(\Phi, \mathcal{L}_{X} \Phi\right)-\mathbf{X} \cdot \mathbf{L} \\
d \mathbf{J}_{X} & =0(\text { on shell }) \quad \Rightarrow \quad \mathbf{J}_{X}=d \mathbf{Q}_{X}+\mathbf{C}
\end{aligned}
$$

- Variation of \mathbf{J}_{X} yields:

$$
\boldsymbol{\omega}\left(\delta \Phi, \mathcal{L}_{X} \Phi\right)=d \underbrace{\left[\delta \boldsymbol{Q}_{X}-\mathbf{X} \cdot \boldsymbol{\theta}(\Phi, \delta \Phi)\right]}_{\equiv \boldsymbol{\chi}(\delta \Phi, \mathbf{X})}+\underbrace{\mathcal{G}(\Phi, \delta \Phi, \mathbf{X})}_{=0 \text { if } \mathbf{E}_{\Phi}=\delta \mathbf{E}_{\Phi}=0}
$$

Linearized Einstein equations from entanglement

$$
\boldsymbol{\omega}\left(\delta \Phi, \mathcal{L}_{X} \Phi\right)=d \underbrace{\left[\delta \boldsymbol{Q}_{X}-\mathbf{X} \cdot \boldsymbol{\theta}(\Phi, \delta \Phi)\right]}_{\equiv \boldsymbol{\chi}(\delta \Phi, \mathbf{X})}+\underbrace{\mathcal{G}\left(\mathbf{E}_{\Phi}, \delta \mathbf{E}_{\Phi}, \mathbf{X}\right)}_{=0 \text { if } \mathbf{E}_{\Phi}=\delta \mathbf{E}_{\Phi}=0}
$$

- Consider setup for calculating S_{A}
- Rindler boost generator: Killing vector ξ_{A}
- Integrate (\star) over Σ_{A}, using $\Phi=g$ and $\mathbf{X}=\xi_{A}$:

$$
\begin{aligned}
\int_{\Sigma_{A}} \mathcal{G}\left(\mathbf{E}_{g}, \delta \mathbf{E}_{g}, \xi_{A}\right) & =\int_{\Sigma_{A}}[\underbrace{\boldsymbol{\omega}\left(\delta g, \mathcal{L}_{\xi_{A}} g\right)}_{=0}-d \boldsymbol{\chi}\left(\delta g, \xi_{A}\right)] \\
& =\int_{\widetilde{A}} \boldsymbol{\chi}\left(\delta g, \xi_{A}\right)-\int_{A} \boldsymbol{\chi}\left(\delta g, \xi_{A}\right) \\
& =\frac{\delta[\operatorname{area}(\widetilde{A})]}{4 G_{N}}-\delta E \stackrel{H \stackrel{R R T}{=} \delta S_{E E}-\delta\left\langle H_{A}\right\rangle^{\text {1st law }}=}{=}
\end{aligned}
$$

- Since this holds for any slice $\Sigma_{A}: \mathcal{G}\left(\mathbf{E}_{g}, \delta \mathbf{E}_{g}, \xi_{A}\right)=0 \quad \Rightarrow \quad \delta \mathbf{E}_{g}=0$

Non-linear perturbations

- This formalism was good for linearized perturbations
- How to go beyond?
- Non-linear version of first law seems not useful: $S\left(\rho_{A} \| \rho_{A}^{(0)}\right) \geq 0$

Non-linear perturbations

- This formalism was good for linearized perturbations
- How to go beyond?
- Non-linear version of first law seems not useful: $S\left(\rho_{A} \| \rho_{A}^{(0)}\right) \geq 0$
- [Hollands-Wald '12]: Can choose a gauge s.t. (\star) holds beyond $\mathcal{O}(\varepsilon)$
- Ensure that geometry near \widetilde{A} "looks the same" at $\mathcal{O}\left(\varepsilon^{2}\right)$:
- GNCs such that \widetilde{A} has fixed location: $\left.K\right|_{\tilde{A}}=0$
- ξ_{A} remains Killing near $\widetilde{A}:\left.\mathcal{L}_{\xi_{A}} g(\varepsilon)\right|_{\widetilde{A}}=0$
- Can now take another ε-derivative of (\star) :

$$
\int_{\Sigma_{A}} \mathcal{G}\left(\mathbf{E}_{g}, \frac{d^{2} \mathbf{E}_{g}}{d \varepsilon^{2}}\right)=\int_{\Sigma_{A}} \boldsymbol{\omega}\left(\frac{d g}{d \varepsilon}, \mathcal{L}_{\xi_{A}} \frac{d g}{d \varepsilon}\right)-\frac{d^{2}}{d \varepsilon^{2}}\left[E_{A}^{\text {grav }}-\frac{\operatorname{area}(\widetilde{A})}{4 G_{N}}\right]
$$

Non-linear Einstein equations

$$
\int_{\Sigma_{A}} \mathcal{G}\left(\mathbf{E}_{g}, \frac{d^{2} \mathbf{E}_{g}}{d \varepsilon^{2}}\right)=\int_{\Sigma_{A}} \boldsymbol{\omega}\left(\frac{d g}{d \varepsilon}, \mathcal{L}_{\xi_{A}} \frac{d g}{d \varepsilon}\right)-\frac{d^{2}}{d \varepsilon^{2}}\left[E_{A}^{\text {grav }}-\frac{\operatorname{area}(\widetilde{A})}{4 G_{N}}\right]
$$

- Via HRRT, we have

$$
\frac{d^{2}}{d \varepsilon^{2}}\left[E_{A}^{g r a v}-\frac{\operatorname{area}(\widetilde{A})}{4 G_{N}}\right] \stackrel{H R R T}{=} \frac{d^{2}}{d \varepsilon^{2}}\left[\left\langle H_{A}\right\rangle-S_{A}^{E E}\right]_{\varepsilon=0} \equiv \delta^{(2)} S\left(\rho_{A} \| \rho_{A}^{(0)}\right)
$$

- Goal: do a CFT calculation to show that

$$
\delta^{(2)} S\left(\rho_{A} \| \rho_{A}^{(0)}\right)=\int_{\Sigma_{A}} \boldsymbol{\omega}\left(\frac{d g}{d \varepsilon}, \mathcal{L}_{\xi_{A}} \frac{d g}{d \varepsilon}\right)
$$

- Nonlinear equations of motion $\left.\frac{d^{2} \mathbf{E}_{g}}{d \varepsilon^{2}}\right|_{\varepsilon=0}=0$ then follow
- I've only written metric perturbations. Scalar fields work exactly the same way. So we get $E_{(2)}^{a b}-\frac{1}{2} T_{(2)}^{a b}=0$

Outline

- Part I: Introduction and results
- Part II: Schematic derivation
- Part III: Details
- Part IV: Generalizations

Conformal perturbation theory

- Second order relative entropy is a quadratic functional in $\delta \rho_{A}=\varepsilon \int d^{d} x \lambda(x) \rho_{A}^{(0)} \mathcal{O}(x)+O\left(\varepsilon^{2}\right)$, i.e., a 2-pt. function:

$$
\begin{aligned}
\delta^{(2)} S\left(\rho_{A} \| \rho_{A}^{(0)}\right) & \equiv \frac{d^{2}}{d \varepsilon^{2}} \operatorname{Tr}\left[\rho_{A} \log \rho_{A}-\rho_{A} \log \rho_{A}^{(0)}\right]_{\varepsilon=0} \\
& =-\int_{-\infty}^{\infty} \frac{d s}{4 \sinh ^{2}\left(\frac{s \pm i \epsilon}{2}\right)} \operatorname{Tr}\left[\left(\rho_{A}^{(0)}\right)^{-1} \delta \rho_{A}\left(\rho_{A}^{(0)}\right)^{ \pm \frac{i s}{2 \pi}} \delta \rho_{A}\left(\rho_{A}^{(0)}\right)^{\mp \frac{i s}{2 \pi}}\right] \\
& \sim \underbrace{\int d^{d} x_{a} d^{d} x_{b} \lambda\left(x_{a}\right) \lambda\left(x_{b}\right)}_{\text {smear Eucl. sources }} \int_{-\infty}^{\infty} \underbrace{\frac{d s^{2}\left\langle\mathcal{O}\left(\tau_{a}, \vec{x}_{a}\right) \mathcal{O}\left(\tau_{b}+i s, \vec{x}_{b}\right)\right\rangle}{\sinh ^{2}\left(\frac{s+i \epsilon \operatorname{sgn}\left(\tau_{a}-\tau_{b}\right)}{2}\right)}}_{\begin{array}{c}
\text { Eucl. 2-pt. function } \\
\text { pushed into real time }
\end{array}}
\end{aligned}
$$

- Modular evolution gives relative boost by "Schwinger parameter" s
- Offsets Euclidean correlator into real time: is

Two-point function from embedding space

- Introduce auxiliary AdS-Rindler wedge:

$$
d s^{2}=-\left(r_{B}^{2}-1\right) d s_{B}^{2}+\frac{d r_{B}^{2}}{\left(r_{B}^{2}-1\right)}+r_{B}^{2} d Y_{B}^{2}
$$

- Can write 2-pt. function as asymptotic symplectic flux evaluated on AdS_{d+1} bulk-boundary propagators:

$$
\begin{aligned}
\left\langle\mathcal{O}\left(\tau, Y_{a}\right) \mathcal{O}\left(i s, Y_{b}\right)\right\rangle=\int_{r_{B} \rightarrow \infty} & d s_{B} d Y_{B} \boldsymbol{\omega}\left(K_{E}\left(i s_{B}, r_{B}, Y_{B} \mid \tau, Y_{a}\right), K_{R}\left(s_{B}, r_{B}, Y_{B} \mid s, Y_{b}\right)\right) \\
K_{E}\left(i s_{B}, r_{B}, Y_{B} \mid \tau, Y_{a}\right) \sim & \frac{1}{2 \Delta-d}\left\langle\mathcal{O}\left(\tau, Y_{a}\right) \mathcal{O}\left(i s_{B}, Y_{B}\right)\right\rangle r_{B}^{-\Delta}+\ldots \quad\left(r_{B} \rightarrow \infty\right) \\
K_{R}\left(s_{B}, r_{B}, Y_{B} \mid s, Y_{b}\right) \sim & \delta\left(s_{B}-s\right) \delta^{d-1}\left(Y_{B}-Y_{b}\right) r_{B}^{-d+\Delta}+\ldots \\
& \quad+\frac{1}{2 \Delta-d} G_{R}\left(s_{B}, Y_{B} \mid s, Y_{b}\right) r_{B}^{-\Delta}+\ldots \quad\left(r_{B} \rightarrow \infty\right)
\end{aligned}
$$

- Intuition: space of asymptotic solutions parametrized as

$$
\boldsymbol{\omega} \sim \delta q \wedge \delta p \sim \delta \phi_{(\Delta-d)} \wedge \delta \phi_{(-\Delta)}
$$

Symplectic flux

- Summary: relative entropy is

$$
\delta^{(2)} S\left(\rho_{A} \| \rho_{A}^{(0)}\right) \sim \int_{\mathrm{bdr}\left(x_{a}\right)} \int_{\mathrm{bdry}\left(x_{b}\right)} \lambda\left(x_{a}\right) \lambda\left(x_{b}\right) \int_{-\infty}^{\infty} \frac{d s^{2}}{\sinh ^{2}\left(\frac{s+i \epsilon \operatorname{sgn}\left(\tau_{a}-\tau_{b}\right)}{2}\right)} \int_{\partial \mathrm{AdS}} \boldsymbol{\omega}\left(K_{E}, K_{R}\right)
$$

- $\boldsymbol{\omega}$ is conserved \Rightarrow can push the $\partial \mathrm{AdS}$-integral to the horizon:

- Perform s-integral and get

$$
\begin{aligned}
\delta^{(2)} S\left(\rho_{A} \| \rho_{A}^{(0)}\right)=\int_{\mathcal{H}^{+}} & \boldsymbol{\omega}\left(\delta \phi, \mathcal{L}_{\xi_{A}} \delta \phi\right) \\
\text { with } \delta \phi(y) & \sim \int_{\operatorname{bdry}(x)} \lambda(x) K_{E}(y \mid x)
\end{aligned}
$$

Summary

- Gravitons ($\delta \phi \rightarrow \delta g_{a b}$) work similarly (a bit more subtle because of gauge choices...)
- CFT result:

$$
\begin{gathered}
\delta^{(2)} S\left(\rho_{A} \| \rho_{A}^{(0)}\right)=\int_{\Sigma_{A}} \omega\left(\delta \phi, \mathcal{L}_{\xi_{A}} \delta \phi\right)+\int_{\Sigma_{A}} \omega\left(\delta g, \mathcal{L}_{\xi_{A}} \delta g\right) \\
\text { with } \delta \phi(y) \sim \int_{\operatorname{bdry}(x)} \lambda(x) K_{E}(y \mid x) \text { etc. }
\end{gathered}
$$

- Hollands-Wald and HRRT tell us:

$$
\delta^{(2)} S\left(\rho_{A} \| \rho_{A}^{(0)}\right)=\int_{\Sigma_{A}} \omega\left(\delta \phi, \mathcal{L}_{\xi_{A}} \delta \phi\right)+\int_{\Sigma_{A}} \boldsymbol{\omega}\left(\delta g, \mathcal{L}_{\xi_{A}} \delta g\right)+\int_{\Sigma_{A}} \mathcal{G}\left(\mathbf{E}, \frac{d^{2} \mathbf{E}}{d \varepsilon^{2}}\right)
$$

- Independence of $\Sigma_{A} \Rightarrow \frac{d^{2} \mathbf{E}}{d \varepsilon^{2}}=0$

Outline

- Part I: Introduction and results
- Part II: Schematic derivation
- Part III: Details
- Part IV: Generalizations

Generalizations

- I have implicitly assumed " $c=a$ ": consistent with Einstein gravity
- If " $c \neq a$ ", consistency of AdS/CFT demands that our derivation shouldn't work
- Indeed, using δg solving $\mathcal{O}(\varepsilon)$ Einstein equations \Rightarrow CFT result ends up with wrong normalization
- Higher curvature theories of gravity can give $c \neq a$
- Idea: Use any $\mathbf{L}=\boldsymbol{\epsilon} f$ (Riem) with same c and a as CFT
- Can now similarly derive equations of motion of \mathbf{L}
[FFH-Hijano-Parrikar-Rabideau, w.i.p.]
- Subtlety: need to work with appropriate entanglement functional

$$
\begin{aligned}
\delta^{(2)} S_{\widetilde{A}}^{(\mathrm{EE})} & =\delta^{(2)} S_{A}^{W \text { ald }}+\delta^{(2)} S_{A}^{e x t r .} \\
\delta^{(2)} S_{A}^{e x t r .} & =\int_{\widetilde{A}} \sqrt{\bar{g}} \frac{\partial^{2} f}{\partial R_{+\alpha+\beta} \partial R_{-\gamma-\delta}} \delta K_{\alpha \beta}^{+} \delta K_{\gamma \delta}^{-}
\end{aligned}
$$

Deriving entanglement functional

- Gravity [Hollands-Wald '12]:

$$
\left[\delta^{(2)} E_{A}^{\text {grav,(L) }}-\delta^{(2)} S_{A}^{W a l d,(L)}\right]=\int_{\Sigma_{A}} \boldsymbol{\omega}^{(L)}\left(\frac{d g}{d \varepsilon}, \mathcal{L}_{\xi_{A}} \frac{d g}{d \varepsilon}\right)-\int_{\Sigma_{A}} \mathcal{G}\left(\mathbf{E}_{g}^{(L)}, \frac{d^{2} \mathbf{E}_{g}^{(L)}}{d \varepsilon^{2}}\right)
$$

- CFT ${ }_{[\mathcal{F} \mathcal{H} \text {-Hijiano-Parrikar-Rabideaul, wi.p.] } \text { : }}$

$$
\delta^{(2)} S\left(\rho_{A} \| \rho_{A}^{(0)}\right)=\int_{\Sigma_{A}} \boldsymbol{\omega}^{(L)}\left(\frac{d g}{d \varepsilon}, \mathcal{L}_{\xi_{A}} \frac{d g}{d \varepsilon}\right)+\delta^{(2)} S_{A}^{e x t r .,(L)}
$$

- HRRT:

$$
\delta^{(2)} S\left(\rho_{A} \| \rho_{A}^{(0)}\right)=\left[\delta^{(2)} E_{A}^{g r a v,(L)}-\delta^{(2)} S_{\widetilde{A}}^{(\mathrm{EE})}\right]
$$

- Can assume $\frac{d^{2} \mathbf{E}_{g}^{(L)}}{d \varepsilon^{2}}=0$ and solve these equations for $\delta^{(2)} S_{\widetilde{A}}^{(\mathrm{EE})}$
- New derivation of (perturbative) entanglement functional
- No replica trick (as in ${ }^{\text {Dong, }}$ Camps ${ }^{\prime} 13$)

Other generalizations

- Perturbations of other states
- Done for linearized equations by [Dong-Lewkowycz '17]
- Higher orders: full Einstein equations encoded in CFT entanglement?
- $\mathcal{O}\left(\varepsilon^{3}\right)$: dependence on

$$
\langle T T T\rangle=a \times(\text { univ. })_{1}+b \times(\text { univ. })_{2}+c \times(\text { univ. })_{3}
$$

- $\mathcal{O}\left(\varepsilon^{4}\right)$: dependence on $\langle T T T T\rangle \rightarrow$ lots of OPE data! Should be very constraining
- Note: basic gravitational identity of [Hollands-Wald 12$]$ is already valid beyond $2^{\text {nd }}$ order
- Quantum corrections?

Results

(1) For any CFT in an EPI state $\left|\psi_{\lambda}(\varepsilon)\right\rangle$ there exists a bulk

$$
\begin{aligned}
& g=g_{A d S}^{(0)}+\varepsilon \delta g^{(1)}+\varepsilon^{2} \delta g^{(2)}+\ldots \\
& \phi=\quad \varepsilon \delta \phi^{(1)}+\varepsilon^{2} \delta \phi^{(2)}+\ldots
\end{aligned}
$$

that computes S_{A} correctly up to $\mathcal{O}\left(\varepsilon^{2}\right)$.
(2) This geometry satisfies gravitational equations of motion up to $\mathcal{O}\left(\varepsilon^{2}\right)$:

$$
E_{(2)}^{a b}=\frac{1}{2} T_{(2)}^{a b}, \quad T_{(2)}^{a b} \equiv T^{a b}\left(\delta \phi^{(1)}, \delta \phi^{(1)}\right)
$$

(3) For CFTs with " $c=a^{\prime \prime} E_{(2)}^{a b}$ is the (2 ${ }^{\text {nd }}$ order) Einstein tensor, otherwise the equation of motion tensor for an appropriate higher curvature theory of gravity

