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Some questions

How does AdS/CFT work?
1

What characterizes holographic CFTs?

I

What characterizes states with a semi-classical gravity dual?

1

local geometry
How does emerge from CFT data?

gravitational dynamics
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Geometry from entanglement

o AdS/CFT realizes entanglement through connected spacetime

o Example: Thermofie|d dOUble [Maldacena ‘01, van Raamsdonk '10]

» CFTg and CFT non-interacting

I
> ... but entangled! CFT, CFTy

» connected bulk (with horizon)

e ER=EPR [Maldacena-Susskind '13]
e Good way to quantify this: entanglement entropy /s s 07
» Bulk extremal surfaces probe connectedness
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Gravity from entanglement

@ So far: purely geometrical picture

@ Perturbations of geometry <> perturbations of HRRT surfaces

o Consistent bulk perturbations satisfy Einstein equations

» Can we see the dynamics emerge from consistency with the way
entanglement entropy changes?
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Setup

@ Relative entropy:

S(pally) = Tr (palog pa — patogply))

— AHYY — AS,
>0

e First law of entanglement: 6<H£40)> —3054=0
e In AdS/CFT:
t

area(A)
4G N

S(HY) = /A dSH 5(T,,) ¢4 ~ /A a2 (549) ¢4

Sa=

(HRRT)




Gravity from entanglement

e First law of entanglement: 654 = 0(H4)
@ linearized Einstein equations < first law of entanglement

[Faulkner-Guica-Hartman-Myers-van Raamsdonk_'13]

» Entanglement is realized geometrically
» Small changes in entanglement structure are reflected by correct
dynamics of the geometry

@ Very nice, but: linearized Einstein equations are somewhat limited in
really probing dynamics

» No matter couplings/backreaction

Goal: Derive second order Einstein equations (incl. matter coupling) from
perturbations of entanglement structure
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Setup
o Consider CFT states |1 (¢)) created by Euclidean path integrals:

#(e5=0)=¢0) — [0 dal [ a4 ix (Lo pr+A(zie) Ox))
(o X)r(e)) = / [Dg] e 12 e erT A

with A(z,¢) = e Mz) + O(e?)
» Euclidean sources A = initial state
for Lorentzian evolution
» Sources vanish as 2%, — 0

» Coherent excitations of bulk fields

@ Leads to perturbations of entanglement entropy:
Sa =580 +e550 +e265% + ...
@ In holography, there will be a dual bulk perturbation theory:
g= gﬁ)a)ls + 55g(1> + &2 ég<2) + ...
6= e6M 200 + ...
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Results

(1) For any CFT in an EPI state [¢\(¢)) there exists a bulk

g= 91(35 +edgM 42592 + ...
¢ = e + 2503 4+ .

that computes S, correctly up to O(e?).
(2) This geometry satisfies gravitational equations of motion up to O(£?):

1
B =57, T =T"0s".060)

(3) For CFTs with “c=a" Ezlgb) is the (2" order) Einstein tensor,
otherwise the equation of motion tensor for an appropriate higher

curvature theory of gravity.
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Remarks

@ What does

9:9%5‘1‘559(1)—1—5259(2)+.._, ¢:55¢(1)+

have to do with CFT data? Roughly:

2d/2  gd—1
F(d/2) 8GN

> 69(;) (2, 2) ~ fbdry(y) ng;l(xa 2|y) (T (y))

> 5<Z5(1)<957 z) ~ fbdry(y) K(z,2ly) (O(y))

> ghs(,2) = (dZ + dz* dz,,) with —a
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Remarks

@ What does

9:9%5"‘559(1)4-6259(2)+..., ¢ =cdpM) + ..

have to do with CFT data? Roughly:

0 2 . /2 d—1
> 9,(435(1772) = 57 (d2? + dz* dz,) with T(d/2) 8€TGN =a

> 005 (@ 2) ~ foaryy KL (@ 2[9) (T ()
> 5¢(1) (.’17, Z) ~ fbdry(y) K(J," z|y) <O(y)>
e Ifd#4, by “a” and “¢" | mean:

Sgo) = a* x (universal)

<Tab(x)Tcd(y)> =Cr X (universal)abcd
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Remarks (2)

@ The result is very universal: CFT need not be holographic
@ The bulk geometry is therefore completely auxiliary (cf., frautner 14))
o [fthe CFT is holographic, the construction will give an explicit
mechanism for the emergence of local bulk dynamics
@ How can this be true?
> 6(2)S(p,4||pf£)) only depends on very little CFT data: c and a
* Reason: ball-shaped A and p = vacuum are very simple/symmetric

» In this sense we are only probing/deriving a rather universal
“sector” of AdS/CFT

» Nevertheless interesting to see how bulk dynamics emerges:
entanglement is not just geometry, but also dynamics
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Wald formalism [Walit 93, Iyer- Wl 94]
e Consider (gravitational) Lagrangian L[®] = L[®]e:
0L=— Eg¢ 00+ dO(P,00)
N N——

equations presymplectic
of motion potential
w(61<I>, (52@) = (519(‘1’, (52‘1’) — (520((1), (51(1))
—_———
symplectic
current

@ In gravity, any vector X generates a symmetry — Noether currents:

Jx=0(®,Lyd) - X L
dJx =0 (on shell) = Jx=dQx +C

@ Variation of Jx vyields:

w(8®, Lx®) = d[6Qx — X - 0(®,5D)] + G(D,5D,X)

/

=x(§®,X) =0 if Eg=0E4=0
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Linearized Einstein equations from entanglement  pautereeat 12

~ /

-~

w(6<1>, [,X‘I)) =d [5QX -X- 9((1), 5(1))] = g(Eq;., 0Eg, X) (*)
=x(5®,X) —0 if Eg—=6Eqp—0

o Consider setup for calculating S4

» Rindler boost generator: Killing vector &4

> Integrate (x) over ¥4, using ® = g and X = {4:

/ G(E,, 6By, £4) = / [w(6g, Le.g) —dx(59,64)]
Sa A T

:/~X(5g,g,4)—/Ax(69,§A)

A

5 A
_ h;%fv)] — 68 "M 585, — 5(H )

@ Since this holds for any slice ¥4: G(Ey,0E;,{4) =0 = {E;=0
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Non-linear perturbations

@ This formalism was good for linearized perturbations

» How to go beyond?
» Non-linear version of first law seems not useful: S(pAHpEf)) >0
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Non-linear perturbations

@ This formalism was good for linearized perturbations

» How to go beyond?
» Non-linear version of first law seems not useful: S(pAHp(O)) >0

[Hollands-Wald '12] : Can choose a gauge s.t. (x) holds beyond O(¢)

e Ensure that geometry near A “looks the same” at O(£2):

» GNCs such that A has fixed location: K|g =0

» &4 remains Killing near A: Le,g(e |A 0

e Can now take another e-derivative of (*):

dQEQ)Z/ (dg dg d? [Egm” area(A)}

L WG tags) T gz -

g(E A 4GN

T4 2f) d52
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Non-linear Einstein equations

d’E, dg dg, d? area(A)
@ Mgy @y 29y _ & | gorav _
9B, 72 ) /EA (Ge Leage) d52[ 4 4Gy ]

@ Via HRRT, we have

3a

55 (pallpY)

& [ - el snr E ) g

@ Goal: do a CFT calculation to show that

dg

. dg
55 (pallp)) = / c
(pAHpA ) (d€ g/ldg)
» Nonlinear equations of motion ;E2 |s—0 = 0 then follow

> I've only written metric perturbatlons Scalar fields work exactly the
same way. So we get E(z) T(azb) =0
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Conformal perturbation theory

@ Second order relative entropy is a quadratic functional in
Spa=ce [dlx )\($)pr§]) O(z) + O(£?), i.e., a 2-pt. function:

&2
5@ 5(pallp) = [PA log pa — palogply )] Y

o ds i is
= e gy L0 00 8 s (o)
T 2

2

Ay day M)A (my) [ SO T)O(r +is, 3y))
a d%@p A(Za b) Smhz(%ﬁa—%))

smear Eucl. sources .
Eucl. 2-pt. function

pushed into real time

» Modular evolution gives relative boost by “Schwinger parameter” s
» Offsets Euclidean correlator into real time: is
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Two-point function from embedding space

@ Introduce auxiliary AdS-Rindler wedge:

B
(rg —1)

o Can write 2-pt. function as asymptotic symplectic flux evaluated
on AdS;1 bulk-boundary propagators:

ds® = —(r% — 1)ds% + + 1% dYE

(O(1,Ya)O(is,Y3)) :/ dspdYpw(Kg(isg,rp, YB|T,Ya), Kr(sp, 75, YE|s, Y3))
TR —>00
1 _
Kp(isp, 75, Y|, Ya) ~ 52— (O(7, Ya)Olisp, Y5)) 52 4. (rg — )

Kr(sg,rB,YB|s,Ys) ~ 6(sp — s)éd_l(YB -Y) T§d+A + ...

1
+mGR(SB7YB‘57Yb) TEA-"-... (TB—)OO)

» Intuition: space of asymptotic solutions parametrized as
W~ 0gAOp ~ dPa—q) NIP(—a)
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Symplectic flux

@ Summary: relative entropy is

oo ds?
@5l ~ [ [ Ao [ e [ @(KE KR)
bdry(zq) /bdry(zp) —oo sinh? (¥R TaT Tl ) Jaads

® w is conserved = can push the JAdS-integral to the horizon:

@ Perform s-integral and get

5®@5(pallpY) = / w (56, ¢ ,60)

with d¢(y / Az) Kg(y|z)
bdry(x)
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Summary

@ Gravitons (0¢) — 0gap) work similarly (a bit more subtle because of
gauge choices...)

o CFT result:
6@ (pallp?) = / w (36, Le ,66) + / (69, Le , 59)
with 00)~ [ A@) Kalle) ete
@ Hollands-Wald and HRRT tell us:

d’E
52 5(pallp)) = /E w (66, e, 56) + / w (69, L, 69) /g(E 8,

@ Independence of ¥4 = ffﬁ =0
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Generalizations

o | have implicitly assumed “c = a": consistent with Einstein gravity

e If “c # a", consistency of AdS/CFT demands that our derivation
shouldn't work

» Indeed, using dg solving O(e) Einstein equations = CFT result ends up
with wrong normalization

o Higher curvature theories of gravity can give ¢ # a
@ Idea: Use any L = € f(Riem) with same ¢ and a as CFT

» Can now similarly derive equations of motion of L
[FH-Hijano-Parrikar-Rabideau, w.i.p.]

» Subtlety: need to work with appropriate entanglement functional
5(2)S%EE) _ 6(2)SK/ald + 5(2)52“7«.

. 0% f
@ s :/ § 77— 0K 50K Do, Camps 'L
4 Z\/g OR 4 a4+p0R__;5 aB " tyé [Dong, Camps '13]
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Deriving entanglement functional
@ Gravity [Hoflands-wald 12] :

[6(2>E§§””’<L> _ 6(2)SZV‘M’(L)] _
IS A

o CFT [FH-Hijano-Parrikar-Rabideau, wip.]

dg dg eatr.,
5OS(pallp)) = [ w (G £y ) + 55D
Sa €

de
@ HRRT:
68 (palley)) = [0 BF ) — 5250
2 (L)
o Can assume ° dEE'% =0 and solve these equations for 5(2)51(1'5'5)

» New derivation of (perturbative) entanglement functional

» No replica trick (as in /mong, camps 13))

dg I dZE(’)
w@)( Ads / gEr, B
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Other generalizations

@ Perturbations of other states
» Done for linearized equations by mong-cewkowycz 17]
@ Higher orders: full Einstein equations encoded in CFT entanglement?

» O(c?®): dependence on
(TTT) = a x (univ.); + b x (univ.), + ¢ x (univ.),

» O(e*): dependence on (TTTT) — lots of OPE data! Should be very
constraining

» Note: basic gravitational identity of /#ofands-wais 12] is already valid
beyond 2" order

@ Quantum corrections?
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Results

(1) For any CFT in an EPI state [¢\(¢)) there exists a bulk

g= 91(35 +edgM 42592 + ...
¢ = e + 2503 4+ .

that computes S, correctly up to O(e?).
(2) This geometry satisfies gravitational equations of motion up to O(£?):

1
B =57, T =T"0s".060)

(3) For CFTs with “c=a" Ezlgb) is the (2" order) Einstein tensor,
otherwise the equation of motion tensor for an appropriate higher

curvature theory of gravity
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