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Motivation

Big Q: How to do low energy effective field theory for mixed states?

Important question for understanding QFT with dissipation etc.

Density matrix!
⇒ path integral evolves both | · 〉 and 〈 · |
⇒ Schwinger-Keldysh doubling: Hphys ⊂ HR ⊗HL
Many applications, e.g., black hole dynamics:

I Double copy somehow encodes physics behind horizon
I The two copies are coupled (→ entanglement, dissipation,

complementarity, unitarity, . . . )

CFTRCFTL

Schwinger, Keldysh,

Feynman-Vernon, ’60s
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Motivation

Preview: ‘doubling’ is powerful and dangerous

I How to formulate unitarity etc. in the doubled theory and
keep track of it along RG?

In general these are hard non-equilibrium questions

Start with a more tractable regime to learn about the general structure

I Hydrodynamics: generic description of dynamics of mixed
states near thermal equilibrium (length scales L� `mfp)
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Phenomenology of hydrodynamics

Hydrodynamics: near-equilibrium EFT for long wavelength fluctuations
about Gibbsian density matrix

microscopic theory

↓ L� `mfp

macroscopic fluid variables: βµ(x) , T (x) = (−gµνβµβν)−1/2

background source: gµν(x)

↓ phenomenology

Constitutive relations: Dynamics:

Tµν [βµ, gµν ] = Tµν(0) + Tµν(1) + . . . ∇νTµν ' 0

E.g. ideal fluid: Tµν(0) = ε(T )T 2βµβν + p(T ) (gµν + T 2βµβν)
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Phenomenology of hydrodynamics

On top of this, one imposes the following

Second law constraint:

∃ JµS = s(T )Tβµ + JµS,(1) + . . . with ∇µJµS & 0 (on-shell)

I Gives interesting constraints on physically allowed
constitutive relations, e.g.:

F Ideal fluid: ε+ p = s T

F 1st order: viscosities η, ζ ≥ 0

F Many more at higher orders...

Bhattacharyya ’12

Son-Surowka ’09

jjjjj
...
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Classification

Theorem: The eightfold way of hydrodynamic transport

. There are eight classes of {Tµν , JµS} consistent with ∇µJµS & 0.

. A simple algorithm constructs these explicitly at any order in ∇µ.

. Constitutive relations not produced by this algorithm, are forbidden
by second law (Class HF ).

FH-Loganayagam-Rangamani ’14 ’15
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Lesson from classification (see talk last week):

We now have a very good understanding of this structure

In particular:

I Second Law constraint as organizing principle

I This constraint has been solved in generality

This structure is highly non-trivial, but yet tractable

I Nice testing ground for general ideas about low-energy EFT
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So what’s the problem?

But: doesn’t make much sense from point of view of Wilsonian field theory

Phenomenological hydrodynamics Natural for field theorist

• ?? • Schwinger-Keldysh path integral
• “current algebra”: construct all • fields & symmetries ⇒ action Seff[φ, gµν ]

tensor structures Tµν [βµ, gµν ] • Tµν = 2√
−g

δSeff

δgµν

• impose second law constraint • ??
by hand: ∇µJµS & 0
• dynamics: conservation law • dynamics: δφSeff = 0
• ?? • dual black hole description

Felix Haehl (Durham University & PI), 7/27
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Effective actions I: Landau-Ginzburg

Consider Landau-Ginzburg action:

I Fields: fluid vector & background geometry = {βµ, gµν}
I Symmetries: diffeomorphism invariance

Seff =

ˆ √
−g L[βµ, gµν ]

I Basic variation defines hydrodynamic currents:

δSeff =
´ √
−g
[

1
2 T

µν δgµν + T hσ δβ
σ +∇µ(· · · )µ︸ ︷︷ ︸

surface term

]
I Further, define entropy current:

JµS = s Tβµ with s ≡
[

1√
−g

δSeff

δT

]
{uµ,gµν} fixed

= −hσβσ

I Can show: {Tµν , JµS} solve the 2nd law constraint
I What about dynamics?
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Dynamics

{βµ, gµν}

{�a, gab}

Xµ

Xµ(σ)

σa

To get correct dynamics, formulate problem as a σ-model:

Xµ :
worldvolume

reference con-
figuration

−→
space filling

brane
(physical

fluid)

gab =
∂Xµ

∂σa
∂Xν

∂σb
gµν [X(σ)] , �a =

∂σa

∂Xµ
βµ[X(σ)]

I Vary pullback fields Xµ, while holding
the reference configuration �a fixed

δSeff

δXµ
= 0

+ diffeo Bianchi id.

 ⇒ ∇µTµν ' 0

Lesson: fluids are naturally σ-models with dynamical d.o.f. = pullback maps

(c.f. formulation of non-dissipative fluids in terms of

Goldstone modes Dubovsky-Hui-Nicolis-Son ’11)
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So are we done?

Is this a complete Lagrangian theory of hydrodynamics?
I No. Out of 8 classes, this construction only covers 2.
I The remaining 6 classes involve both dissipative and

non-dissipative transport.

Felix Haehl (Durham University & PI), 10/27
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Preview: missing ingredients

σ-model Seff[βµ[Xµ], gµν ] captures 2 out of 8 classes

In these 2 classes,

Nµ ≡ JµS − (JµS )canonical ≡ JµS + βνT
µν

... is the Noether current for diffeomorphisms along βµ

Proposal for upgrading the σ-model to get 8 classes:

Gauge ‘thermal translations’ along βµ −→ U(1)T gauge symmetry

Supersymmetrize the σ-model (NT = 2, à la Vafa-Witten ’94)

Seff with these symmetries will give precisely the 8 classes consistent
with second law (and nothing else)

... let’s understand this better

Felix Haehl (Durham University & PI), 11/27
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Schwinger-Keldysh I: doubling

Non-equilibrium effective field theory in general described by
Schwinger-Keldysh formalism

Most well-known feature of SK is
doubling of fields and
symmetries:

Hphys ⊂ HR ⊗HL

bt
iε

i(ε− β)

R copy

L copy

OR

OL

Ô

Integrating out high energy modes from SK path integral leads to coupling
between R and L (”influence functionals”)

Just doubling everything gives too much freedom (easy to write
influence functionals which violate microscopic unitarity)

I Important obstacle for systematic understanding of non-equilibrium
physics (mixed states, dissipation, fluctuations, noise...)

Schwinger, Keldysh,

Feynman-Vernon, ’60s

Felix Haehl (Durham University & PI), 12/27



Outline

Part I: The structure of hydrodynamics

◦ The Eightfold Way

◦ Effective actions I: Landau-Ginzburg

◦ Preview: missing ingredients

Part II: Three features of Schwinger-Keldysh formalism

◦ Doubling

◦ Topological limit

◦ KMS condition

Part III: Gauge theory of entropy

◦ Example: Langevin particle

◦ Effective actions II: Schwinger-Keldysh and fluids

◦ Hydrodynamic gauged σ-model and gravity



Schwinger-Keldysh II: topological limit

Second defining feature of SK path integrals: time ordering prescription

SK generating functional:

ZSK [JR, JL] = Tr
{
U [JR] ρ0 U

†[JL]
}

bt
→ time ordered →

← anti-time ordered ←

In particular:

ZSK [JR = JL ≡ J ] = Tr ρ0 ⇒ 〈TSK
∏
i

(OR(ti)− OL(ti)) 〉 = 0

⇒ The sector of difference operators (OR − OL) is protected for
any SK path integral!

Felix Haehl (Durham University & PI), 13/27



Schwinger-Keldysh II: topological limit

I.e.: If there are sources only for difference operators,
any generic SK theory has a topological symmetry.

This comes from unitarity of SK construction

Most natural way to realize this: cohomological structure

I Every operator Ô represented by a quadruplet {OR,OL,OG,OḠ}
I SK supercharges Q

SK
, Q

SK
define topological sector (c.f. BRST):

OR,OL

O
G

O
G

OR − OL

Q
SK Q

SK

Q
SK

−Q
SK

FH-Loganayagam-Rangamani ’15

Witten ’82, Vafa-Witten ’94
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Schwinger-Keldysh II: topological limit

A version of this topological symmetry should survive RG

Hence, we need to have it also in the low-energy theory!

I This then ensures that the low-energy effective theory comes
from a unitary QFT

In particular hydrodynamics should have a topological limit

Felix Haehl (Durham University & PI), 15/27



Outline

Part I: The structure of hydrodynamics

◦ The Eightfold Way

◦ Effective actions I: Landau-Ginzburg

◦ Preview: missing ingredients

Part II: Three features of Schwinger-Keldysh formalism

◦ Doubling

◦ Topological limit

◦ KMS condition

Part III: Gauge theory of entropy

◦ Example: Langevin particle

◦ Effective actions II: Schwinger-Keldysh and fluids

◦ Hydrodynamic gauged σ-model and gravity



Schwinger-Keldysh III: KMS condition

In thermal equilibrium: Euclidean periodicity ⇒ KMS invariance

Õ(t) ≡ e−iδβO(t) ≡ O(t− iβ)
KMS
↓
= O(t)

I Can replace OL → ÕL in the previous time-ordering discussion:

〈TSK
∏
i

(OR(ti)− ÕL(ti)) 〉 = 0

⇒ The sector of KMS rotated difference operators (OR − ÕL)
is also topological!

Felix Haehl (Durham University & PI), 16/27



Schwinger-Keldysh III: KMS condition

In global thermal equilibrium: second topological sector OR − ÕL

I Associated to a non-local symmetry (thermal translations)
I Encode in second cohomological structure defined by Q

KMS
,Q

KMS
:

OL

O
G

O
G

OR − ÕL

Q
KMS Q

KMS

Q
KMS

−Q
KMS

Proposal for macroscopic description (local equilibrium, L� T−1):

. KMS becomes emergent local U(1)T gauge invariance

. Q
KMS

, Q
KMS

→ BRST charges of U(1)T

FH-Loganayagam-Rangamani ’15
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Toy model: Langevin particle

Consider Brownian motion of Langevin particle at x(t):

−Eom ≡ m d2x

dt2
+
∂U

∂x
+ ν

dx

dt
= N

Martin-Siggia-Rose (MSR) construction:

[dx]

ˆ
[dN] δ(Eom + N) det

(
δEom

δx

)
ei SGaussian noise[N]

= [dx]

ˆ
[df ][dψ][dψ] exp i

ˆ
dt

(
f Eom + i ν f2 + ψ

(
δEom

δx

)
ψ

)

Can write this in terms of NT = 2 supercharges Q, Q, implementing the
algebras of before:

= [dx]

ˆ
[df ][dψ][dψ] exp i

ˆ
dt

{
Q ,
[
Q ,

m

2

(
dx

dt

)2

− U(x)− i ν ψψ
]}∣∣∣∣gauge

fixed

Witten ’82

Dijkgraaf-Moore ’97

FH-Loganayagam-Rangamani ’15

Martin-Siggia-Rose ’73

De Dominicis-Peliti ’78
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Toy model: Langevin particle

Can make susy manifest by working in superspace:

x(S) = x + θ ψ + θ̄ ψ + θθ̄ f

Q

Q

ˆ
dt

{
Q ,
[
Q ,

m

2

(
dx

dt

)2

− U(x)− i ν ψψ
]}∣∣∣∣gauge

fixed

=

ˆ
dt dθ dθ̄

(
m

2

(
dx(S)

dt

)2

− U(x(S))− i νDθx(S) Dθ̄x(S)

)∣∣∣∣gauge
fixed

Invariance under CPT ⇒ Jarzynski relation:〈
e−β ∆W

〉
= e−β ∆F ⇒ 〈∆W 〉 ≥ ∆F

Jarzynski ’97

FH-Loganayagam-Rangamani [w.i.p.]
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Gauge theory of entropy in hydrodynamics

Remember two features of fluids:

(1) ∇µJµS & 0 was mysterious from Wilsonian point of view

(2) For ’Lagrangian’ classes of transport, JµS was roughly
Noether current for translations along βµ

’State-dependent’ thermal translations of this type are precisely what
implements KMS invariance of SK path integrals near equilibrium!

I JµS is the macroscopic current of emergent U(1)T gauge symmetry

unitarity & KMS

∇µJµS & 0
effective action
U(1)T invariant

Felix Haehl (Durham University & PI), 20/27



Effective actions II: Schwinger-Keldysh and fluids

There already exists a SK framework for non-dissipative hydrodynamics:

Proposed field content:

. Hydrodynamic field: βµ

. Background source: gµν

. SK copy of source: g̃µν

. U(1)T gauge field: A(T)
µ

Proposed symmetries:

. Diffeo invariance

. U(1)T KMS gauge invariance

Theorem: any constitutive relations {Tµν ,Gσ} which satisfy
adiabaticity equation can be obtained from a diffeo and U(1)T invariant
Lagrangian (and vice versa):

LT[βµ, gµν , g̃µν ,A
(T)
µ] =

1

2
Tµν [βµ, gµν ] g̃µν−

Gσ[βµ, gµν ]

T
A(T)

σ

FH-Loganayagam-Rangamani ’14-’15
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Effective actions II: some compelling features

Field content and symmetries are such that we get precisely the 7
adiabatic classes and nothing more (no Class HF )

I U(1)T keeps Schwinger-Keldysh doubling under control

I Adiabaticity equation ' U(1)T Bianchi identity

I Conserved entropy current is gauge current of emergent U(1)T

symmetry

Upshot: we already have a very good guess for the bosonic part of
non-dissipative Lagrangian

I It nicely unifies the classification
I It gives a natural explanation for the phenomenological framework

⇒ justification for the proposal of emergent symmetries

Felix Haehl (Durham University & PI), 22/27



Outline

Part I: The structure of hydrodynamics

◦ The Eightfold Way

◦ Effective actions I: Landau-Ginzburg

◦ Preview: missing ingredients

Part II: Three features of Schwinger-Keldysh formalism

◦ Doubling

◦ Topological limit

◦ KMS condition

Part III: Gauge theory of entropy

◦ Example: Langevin particle

◦ Effective actions II: Schwinger-Keldysh and fluids

◦ Hydrodynamic gauged σ-model and gravity



Hydrodynamics from field theorists’ point of view

Proposal summary:

Hydrodynamics = deformation of a gauged topological σ-model

Deformation away
from topological
limit to get
hydrodynamics

U(1)T gauge
symmetry:
manifestation of
KMS invariance

Topological susy
implements
unitarity and fluc-
tuation/dissipation

Fluid degrees of
freedom are
σ-model pullback
maps (Goldstones)

Work in progress:

I Write down this theory explicitly: fields, symmetries, actions

I Check that it reproduces all of Second Law consistent hydrodynamics
and no more

Felix Haehl (Durham University & PI), 23/27



Fluid σ-model in superspace

First step: make quadrupling and SK susy manifest, using superspace

I E.g. σ-model pullback multiplet:

Xµ
(S) = Xµ + θ ψ

µ
+ θ̄ ψµ +θθ̄Fµ

Q

Q

I Similarly, a metric superfield g
(S)
ab

I Plus a (super-)connection for emergent U(1)T gauge symmetry:

A = Aa dσ
a + Aθ dθ + Aθ̄ dθ̄

Symmetries to impose are now very natural:

I Super-diffeos, U(1)T invariance, CPT, ghost number conservation

FH-Loganayagam-Rangamani ’15

Felix Haehl (Durham University & PI), 24/27



Fluid σ-model in superspace

Formulate U(1)T gauged σ-model with these fields and symmetries:

S
(hydro)
eff =

ˆ
world

volume

d4σ dθ dθ̄ (· · · )

Most interestingly, we get dissipation (all of it, at any order in ∇µ):

S
(dissipation)
eff ∼

ˆ
world

volume

d4σ dθ dθ̄
√
−g(S)

(
iη((ab)(cd))Dθ g(S)

ab Dθ̄ g
(S)
cd

)

I Ghost bilinears responsible for dissipation
I Jarzynski holds (⇒ Second Law)
I Variation w.r.t. Aa gives entropy current

Conserved U(1)T current = standard entropy current + ghost terms

FH-Loganayagam-Rangamani [w.i.p.]
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Outlook: gravity

AdS/CFT:

dissipating fluids ! large AdS black holes

Conjecture: long-wavelength, near-horizon AdS dynamics can be
systematically characterized using our eightfold classification scheme

In fluids: Second Law ↔ U(1)T invariance ↔ microscopic consistency

I SK doubling & ghosts: crucial (!) for field theoretic understanding

I What will this teach us about dissipation, complementarity etc.
in gravity?

Gauge theory of fluid entropy
?

! BH entropy

.....

Felix Haehl (Durham University & PI), 26/27



Summary

We found a complete classification and explicit solution
of hydrodynamic transport [1412.1090 and 1502.00636]

For full understanding from field theorists’ point of view, need more
ingredients: [1510.02494 and w.i.p.]

I SK formalism

I Hidden susy behind every relativistic fluid

I SK path integral localizes on initial time thermal partition function if
only difference operators are sourced

I Ghosts account for dissipation

I KMS conditions ⇒ U(1)T gauge invariance in hydrodynamics

I U(1)T symmetry current = entropy current + ghosts

All this is dual to fundamental questions about gravity with horizons

Felix Haehl (Durham University & PI), 27/27
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