Spin glasses and holography

Felix Haehl (IAS)

- 2110.00007 with Maine Christos (Harvard) & Subir Sachdev (Harvard, IAS)
 - 2106.03838 with Tarek Anous (Amsterdam)

Motivation

Disorder and averaging play crucial role in recent AdS/CFT discussions

JT gravity

low-energy dynamics of SYK-type ensembles

[Kitaev][Maldacena/Stanford (/Yang)][Engelsoy/Mertens/ Verlinde][Maldacena/Qi] [Blommaert/Mertens/ Verschelde] ...

AdS₃ pure gravity, 'U(1) gravity'

CFT ensembles, microcanonical averaging

[Maloney/Witten][Afkhami-Jeddi/Cohn/Hartman/Tajdini][Cotler/Jensen][Pollack/Rozali/Sully/Wakeham] ...

wormholes, gravitational instantons

spectral form factor, unitary Page curve, statistics of OPE coefficients [Cotler +8][Saad/Shenker/ Stanford][Almheiri/Engelhardt/ Marolf/Maxfield][Penington] [Almheiri/Hartman/Maldacena/ Shaghoulian/Tajdini][Saad] [Belin/de Boer] ...

Desirable to understand other characteristic properties of disordered systems and consequences for gravity!

Outline

- Introduction
- Random SU(M) Heisenberg model
- Holographic speculations
- p-spin spherical model
- Conclusion

Introduction

SYK model: important features

- N Majorana fermions with random, Gaussian couplings
- ightharpoonup Solvable for $N\gg eta J\gg 1$
 - 'Mean field' description at large N in terms of bilocal 2-point function

$$G(\tau, \tau') = \frac{1}{N} \sum_{i=1}^{N} \langle \psi_i(\tau) \psi_i(\tau') \rangle$$

$$(\overline{J_{ijkl}} = 0, \overline{J_{ijkl}^2} = J^2/N^3)$$

- Emergent reparametrization invariance: $\tau \to f(\tau)$
 - Broken by saddle point solution to $f \in SL(2,\mathbb{R})$

$$G_c(\tau - \tau') \propto \frac{1}{(\tau - \tau')^{2/q}}$$

* The pseudo-Goldstone associated with reparametrizations $\tau \to f(\tau)$ has a 'Schwarzian' effective action:

$$I_{\mathrm{Schw.}} \propto -\frac{N}{\mathcal{J}} \int d\tau \ \{f(\tau), \tau\}$$

Same action also describes dilaton gravity in AdS2

[Almheiri/Polchinski '14] [Maldacena/Stanford/Yang '16]

Symmetry breaking pattern implies near-extremal entropy of the form

$$S = S_0 + \# \frac{N}{\beta \mathcal{J}}$$
 from Schwarzian

 Schwarzian gives universal leading contribution to out-of-time-order correlation functions (OTOCs)

OTOC =
$$\langle \psi_i(t)\psi_j(0)|\psi_i(t)\psi_j(0)\rangle \sim a_0 - \frac{a_1}{N} e^{(\frac{2\pi}{\beta} + \dots)t}$$

Spin glasses

- Many disordered systems exhibit a spin glass phase at low temperatures
- Random couplings lead to frustration, complicated free energy landscape

e.g.:
$$H_{\mathrm{SK}}=\frac{1}{\sqrt{N}}\sum_{i,j=1}^{N}J_{ij}\sigma^{i}\sigma^{j}$$

$$(\sigma^{i}=\pm1\,,\;\;\overline{J_{ij}}=0\,,\;\;\overline{J_{ij}^{2}}=J^{2})$$

Many metastable spin glass states separated by high barriers

Spin glasses

▶ To detect spin glass phase, consider 'temporal' order parameter

figures: p-spin model [FH/Anous '21]

Averaged two-point function:

$$G^{>}(t) = \frac{1}{N} \sum_{i=1}^{N} \overline{\langle \sigma^{i}(t)\sigma^{i}(0) \rangle}$$

Spin glass order parameter:

$$\overline{q} \equiv \lim_{t \to \infty} G^{>}(t) = \frac{1}{N} \sum_{i} \overline{\langle \sigma^i \rangle^2}$$

[Edwards/Anderson '75]

paramagnetic phase: $\overline{q} = 0$

spin glass phase: $\overline{q} > 0$

Goals

- Characteristic features of SG phase: many metastable states, slow dynamics, inability to reach equilibrium, loss of ergodicity, ...
- Understand low temperature properties (with AdS2 gravity in mind):
 - Fate of zero temperature entropy?
 - Fate of reparametrization symmetry?
 - Behavior of Lyapunov exponent?
- Understand within the $nAdS_2/nCFT_1$ paradigm

Overview

I will mention two (quantum) generalizations of $H_{\rm SK}=rac{1}{\sqrt{N}}\sum_{i,j=1}^N J_{ij}\sigma^i\sigma^j$

SU(M) Heisenberg magnet

$$H = \frac{1}{\sqrt{NM}} \sum_{i < j=1}^{N} J_{ij} \,\hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$$

SU(M) spin operators

- Physical & closely related to (complex) SYK model
- Can see weak spin glass order in fermionic representation

p-spin spherical model

$$H = \sum_{i_1 < \ldots < i_p} J_{i_1 \cdots i_p} \sigma^{i_1} \cdots \sigma^{i_p}$$
 bosonic 'rotors': $\frac{1}{N} \sum_{i=1}^N \sigma^i \sigma^i = M$

- Motivated by higher dimensional constructions
- Two dimensionless parameters: βJ , MJ (thermal & quantum fluctuations)

Random SU(M) Heisenberg magnet

[Christos/**FH**/Sachdev 2110.00007]

Random SU(M) Heisenberg magnet

$$H = \frac{1}{\sqrt{NM}} \sum_{i < j=1}^{N} \sum_{\alpha,\beta=1}^{M} J_{ij} S_{\beta}^{\alpha}(i) S_{\alpha}^{\beta}(j)$$

[Bray/Moore '80] [Sachdev/Ye '93]

SU(M) operators on sites i, j

- Fermionic spinon representation: $S^{\alpha}_{\beta}=f^{\dagger}_{\beta}f^{\alpha}-rac{1}{2}\,\delta^{\alpha}_{\beta}~~(f^{\dagger}_{\alpha}f^{\alpha}=M/2)$
- U(1) gauge invariance: $f^{\alpha}(\tau) \rightarrow e^{i\phi(\tau)} f^{\alpha}(\tau)$

Random SU(M) Heisenberg magnet

$$H = \frac{1}{\sqrt{NM}} \sum_{i < j=1}^{N} \sum_{\alpha,\beta=1}^{M} J_{ij} S_{\beta}^{\alpha}(i) S_{\alpha}^{\beta}(j)$$

[Bray/Moore '80] [Sachdev/Ye '93]

SU(M) operators on sites i, j

- Fermionic spinon representation: $S^{\alpha}_{\beta}=f^{\dagger}_{\beta}f^{\alpha}-rac{1}{2}\,\delta^{\alpha}_{\beta}~~(f^{\dagger}_{\alpha}f^{\alpha}=M/2)$
- U(1) gauge invariance: $f^{\alpha}(\tau) \rightarrow e^{i\phi(\tau)} f^{\alpha}(\tau)$

Basic idea: ▶ We always take large N

▶ For $M \to \infty$: find equations of (complex) SYK

For finite M: (weak) spin glass order

Random SU(M) Heisenberg magnet

$$H = \frac{1}{\sqrt{NM}} \sum_{i < j=1}^{N} \sum_{\alpha,\beta=1}^{M} J_{ij} S_{\beta}^{\alpha}(i) S_{\alpha}^{\beta}(j)$$

[Bray/Moore '80] [Sachdev/Ye '93]

SU(M) operators on sites i, j

- Fermionic spinon representation: $S^{lpha}_{eta}=f^{\dagger}_{eta}f^{lpha}-rac{1}{2}\,\delta^{lpha}_{eta}~(f^{\dagger}_{lpha}f^{lpha}=M/2)$
- U(1) gauge invariance: $f^{\alpha}(\tau) \rightarrow e^{i\phi(\tau)} f^{\alpha}(\tau)$
- Want to compute disorder averaged (quenched) free energy:

$$\beta \mathcal{F} = -\overline{\log \mathcal{Z}}$$

$$\mathcal{Z}[J_{ij}] = \int Df^{\alpha} D\lambda \exp \left\{ -\int d\tau \left[\sum_{i} f_{\alpha}^{\dagger}(i) \partial_{\tau} f^{\alpha}(i) + \frac{1}{\sqrt{NM}} \sum_{i,j} J_{ij} S_{\beta}^{\alpha}(i) S_{\alpha}^{\beta}(j) \right] \right\}$$

$$-i \int d\tau \sum_{i} \lambda(i) \left(f_{\alpha}^{\dagger}(i) f^{\alpha}(i) - M/2 \right) \right\}$$

Replica trick

Strategy: use replica trick

$$\log \mathcal{Z} = \lim_{n \to 0} \partial_n \mathcal{Z}^n \quad \Rightarrow \quad \beta \mathcal{F} = -\lim_{n \to 0} \partial_n \overline{\mathcal{Z}^n}$$
$$\{ f^{\alpha}, \lambda \} \longrightarrow \{ f_a^{\alpha}, \lambda_a \} \qquad (a = 1, \dots, n)$$

Introduce bilocal spinon collective field (with replica indices):

$$G_{ab}(\tau, \tau') = -\frac{1}{M} \sum_{\alpha} f_a^{\alpha}(\tau) f_{b\alpha}^{\dagger}(\tau')$$

... and the spinon self-energy $\Sigma_{ab}(\tau,\tau')$

... and a Hubbard-Stratonovich field $Q_{ab}(\tau)$

Large N effective action for G, Σ, Q :

$$\frac{\mathcal{S}[Q]}{N} = \frac{J^2 M}{4} \int d\tau d\tau' \left[\sum_{a,b} Q_{ab} (\tau - \tau')^2 \right] - \log \mathcal{Z}_f$$

with 'single-site' partition function:

$$\mathcal{Z}_{f}[Q] = \exp\left(-\frac{k^{2}J^{2}}{2} \int d\tau d\tau' \sum_{a,b} Q_{ab}(\tau,\tau')\right) \int \mathcal{D}G_{ab}\mathcal{D}\Sigma_{ab}\mathcal{D}\lambda_{a} \ e^{-MI[Q]}$$

$$I[Q] = -\log \det\left\{-\delta_{ab}[\partial_{\tau} + i\lambda_{a}(\tau)]\delta(\tau - \tau') - \Sigma_{ab}(\tau,\tau')\right\} - ik \int d\tau \sum_{a} \lambda_{a}(\tau)$$

$$+ \int d\tau d\tau' \sum_{a,b} \left[\frac{J^{2}}{2}Q_{ab}(\tau - \tau') G_{ab}(\tau,\tau') G_{ba}(\tau',\tau) - \Sigma_{ab}(\tau,\tau') G_{ba}(\tau',\tau)\right]$$

▶ Large N effective action for G, Σ, Q :

$$\frac{\mathcal{S}[Q]}{N} = \frac{J^2 M}{4} \int d\tau d\tau' \left[\sum_{a,b} Q_{ab} (\tau - \tau')^2 \right] - \log \mathcal{Z}_f$$

with 'single-site' partition function:

$$\mathcal{Z}_{f}[Q] = \exp\left(-\frac{k^{2}J^{2}}{2} \int d\tau d\tau' \sum_{a,b} Q_{ab}(\tau,\tau')\right) \int \mathcal{D}G_{ab}\mathcal{D}\Sigma_{ab}\mathcal{D}\lambda_{a} \ e^{-MI[Q]}$$

$$I[Q] = -\log \det\left\{-\delta_{ab}[\partial_{\tau} + i\lambda_{a}(\tau)]\delta(\tau - \tau') - \Sigma_{ab}(\tau,\tau')\right\} - ik \int d\tau \sum_{a} \lambda_{a}(\tau)$$

$$+ \int d\tau d\tau' \sum_{a,b} \left[\frac{J^{2}}{2}Q_{ab}(\tau - \tau') G_{ab}(\tau,\tau') G_{ba}(\tau',\tau) - \Sigma_{ab}(\tau,\tau') G_{ba}(\tau',\tau)\right]$$

Large N saddle point equation:

$$Q_{ab}(\tau - \tau') = -\frac{k^2}{M} - \frac{1}{\mathcal{Z}_f[Q]} \int \mathcal{D}G_{ab}\mathcal{D}\Sigma_{ab}\mathcal{D}\lambda_a \ G_{ab}(\tau, \tau')G_{ba}(\tau', \tau) \ e^{-MI[Q]}$$

▶ Large N effective action for G, Σ , Q:

$$\frac{\mathcal{S}[Q]}{N} = \frac{J^2 M}{4} \int d\tau d\tau' \left[\sum_{a,b} Q_{ab} (\tau - \tau')^2 \right] - \log \mathcal{Z}_f$$

with 'single-site' partition function:

$$\mathcal{Z}_{f}[Q] = \exp\left(-\frac{k^{2}J^{2}}{2} \int d\tau d\tau' \sum_{a,b} Q_{ab}(\tau,\tau')\right) \int \mathcal{D}G_{ab}\mathcal{D}\Sigma_{ab}\mathcal{D}\lambda_{a} \ e^{-MI[Q]}$$

$$I[Q] = -\log\det\left\{-\delta_{ab}[\partial_{\tau} + i\lambda_{a}(\tau)]\delta(\tau - \tau') - \Sigma_{ab}(\tau,\tau')\right\} - ik \int d\tau \sum_{a} \lambda_{a}(\tau)$$

$$+ \int d\tau d\tau' \sum_{a,b} \left[\frac{J^{2}}{2}Q_{ab}(\tau - \tau') G_{ab}(\tau,\tau') G_{ba}(\tau',\tau) - \Sigma_{ab}(\tau,\tau') G_{ba}(\tau',\tau)\right]$$

Large N saddle point equation:

$$Q_{ab}(\tau - \tau') = -\frac{k^2}{M} - \frac{1}{\mathcal{Z}_f[Q]} \int \mathcal{D}G_{ab}\mathcal{D}\Sigma_{ab}\mathcal{D}\lambda_a \ G_{ab}(\tau, \tau')G_{ba}(\tau', \tau) e^{-MI[Q]}$$

evaluate for large M: saddle + fluctuations

Large M saddle point equations:

$$Q_{ab}(\tau) = -G_{ab}(\tau)G_{ba}(-\tau)$$

$$\sum_{ab}(\tau) = J^2Q_{ab}(\tau)G_{ab}(\tau)$$

$$G_{ab}(i\omega) = [i\omega\delta_{ab} - \Sigma_{ab}(i\omega)]^{-1}$$

Large M saddle point equations:

$$Q_{ab}(\tau) = -G_{ab}(\tau)G_{ba}(-\tau)$$

$$\sum_{ab}(\tau) = J^2 Q_{ab}(\tau)G_{ab}(\tau)$$

$$G_{ab}(i\omega) = [i\omega\delta_{ab} - \Sigma_{ab}(i\omega)]^{-1}$$

 $ightharpoonup G_{ab}$ has to be replica diagonal. Therefore, at large M:

$$Q(\tau) = -G(\tau)G(-\tau)$$

$$\Sigma(\tau) = -J^2G(\tau)^2G(-\tau)$$

$$G(i\omega) = [i\omega - \Sigma(i\omega)]^{-1}$$

—> e.o.m. of complex SYK

[Sachdev/Ye '93][Sachdev '15][Gu/Kitaev/Sachdev/Tarnopolsky '19]

Large M saddle point equations:

$$Q_{ab}(\tau) = -G_{ab}(\tau)G_{ba}(-\tau)$$

$$\sum_{ab}(\tau) = J^2 Q_{ab}(\tau)G_{ab}(\tau)$$

$$G_{ab}(i\omega) = [i\omega\delta_{ab} - \Sigma_{ab}(i\omega)]^{-1}$$

 $ightharpoonup G_{ab}$ has to be replica diagonal. Therefore, at large M:

$$Q(\tau) = -G(\tau)G(-\tau)$$

$$\Sigma(\tau) = -J^2G(\tau)^2G(-\tau)$$

$$G(i\omega) = [i\omega - \Sigma(i\omega)]^{-1}$$

—> e.o.m. of complex SYK

[Sachdev/Ye'93][Sachdev'15][Gu/Kitaev/Sachdev/Tarnopolsky'19]

The solution is a gapless 'fractionalized' spin liquid exhibiting the SYK physics that has been explored since [Sachdev/Ye'93] and all its connections to AdS2 gravity.

Infinite vs. finite M

$$Q(\tau) = -G(\tau)G(-\tau)$$
$$\Sigma(\tau) = -J^2G(\tau)^2G(-\tau)$$
$$G(i\omega) = [i\omega - \Sigma(i\omega)]^{-1}$$

• Spin-spin spectral function: $Q(\tau) = \int_0^\infty \frac{d\omega}{\pi} \chi''(\omega) e^{-\omega \tau}$

$$M \to \infty$$
: $\chi''(\omega) \sim \frac{\operatorname{sgn}(\omega)}{J} \left[1 - \frac{c}{J} |\omega| - \dots \right]$

'conformal' long-time behavior ($Q(\tau) \sim 1/|\tau|$)

'Schwarzian' correction

[Sachdev/Ye'93]

Infinite vs. finite M

$$Q(\tau) = -G(\tau)G(-\tau)$$

$$\Sigma(\tau) = -J^2G(\tau)^2G(-\tau)$$

$$G(i\omega) = [i\omega - \Sigma(i\omega)]^{-1}$$

• Spin-spin spectral function: $Q(\tau) = \int_0^\infty \frac{d\omega}{\pi} \chi''(\omega) e^{-\omega \tau}$

$$M \to \infty$$
: $\chi''(\omega) \sim \frac{\operatorname{sgn}(\omega)}{J} \left[1 - \frac{c}{J} |\omega| - \dots \right]$

'conformal' long-time behavior $(Q(\tau) \sim 1/|\tau|)$

'Schwarzian' correction

[Sachdev/Ye'93]

Finite M behavior looks different:

[Arrachea/Rozenberg '02]

[Shackleton/Wietek/Georges/Sachdev '21]

Can we understand this analytically in the simple fermionic description?

Finite M corrections

• Finite *M*: $G_{ab}, \Sigma_{ab}, Q_{ab}$ need not be replica diagonal

• Ansatz:
$$Q_{ab}(\tau)=[Q(\tau)+\overline{q}]\,\delta_{ab}+q_{ab}$$
 $(q_{aa}=0)$

spin glass order parameters

• Compute large-N effective action perturbatively in \overline{q}, q_{ab} :

$$\frac{\mathcal{S}[Q(\tau), \overline{q}, q_{ab}]}{nNM} = \frac{(\beta J)^2}{4} \left(\overline{q}^2 + \frac{1}{n} \sum_{a \neq b} q_{ab}^2 \right) \left[1 - \frac{J^2}{M} \hat{Q}(\omega = 0)^2 \right] + \dots$$

onset of spin glass order: $1 = \frac{J^2}{M} \hat{Q}(0)^2 \quad \Leftrightarrow \quad T_c \sim J \, e^{-\sqrt{M\pi}}$

• Free energy contains terms that seem divergent as $eta o\infty$:

$$\mathcal{F} \equiv -\frac{\ln \mathcal{Z}}{\beta n} = -c_0 - c_1 \overline{q} - c_2 \overline{q}^2 - d_2 \beta \left(\overline{q}^2 + \frac{1}{n} \sum_{a \neq b} q_{ab}^2 \right) - c_3 \overline{q}^3 - e_3 \beta^2 \left(\overline{q}^3 + 3\overline{q} \frac{1}{n} \sum_{a \neq b} q_{ab}^2 + \frac{1}{n} \operatorname{Tr} q_{ab}^3 \right)$$
$$-c_4 \overline{q}^4 - d_4 \beta \left(\overline{q}^4 + \frac{1}{n} \sum_{a \neq b} q_{ab}^4 \right) + \dots$$

- But: extremization w.r.t. \overline{q}, q_{ab} makes all dangerous terms vanish!
- T=0: spin glass solution is replica symmetric, $q_{ab}=\overline{q}\equiv q_{EA}$

• Free energy contains terms that seem divergent as $eta o\infty$:

$$\mathcal{F} \equiv -\frac{\ln \mathcal{Z}}{\beta n} = -c_0 - c_1 \overline{q} - c_2 \overline{q}^2 - d_2 \beta \left(\overline{q}^2 + \frac{1}{n} \sum_{a \neq b} q_{ab}^2 \right) - c_3 \overline{q}^3 - e_3 \beta^2 \left(\overline{q}^3 + 3\overline{q} \frac{1}{n} \sum_{a \neq b} q_{ab}^2 + \frac{1}{n} \operatorname{Tr} q_{ab}^3 \right)$$
$$-c_4 \overline{q}^4 - d_4 \beta \left(\overline{q}^4 + \frac{1}{n} \sum_{a \neq b} q_{ab}^4 \right) + \dots$$

- But: extremization w.r.t. \overline{q}, q_{ab} makes all dangerous terms vanish!
- T=0: spin glass solution is replica symmetric, $q_{ab}=\overline{q}\equiv q_{EA}$
- *T>0:* replica symmetry breaking **Parisi solution:**

$$q_{ab} = \begin{pmatrix} A_{m_1} & & & & & \\ & A_{m_1} & & q_0 & & \\ & & \ddots & & & \\ & & q_0 & & A_{m_1} & \\ & & & & A_{m_1} \end{pmatrix}$$

• Free energy contains terms that seem divergent as $\beta \to \infty$:

$$\mathcal{F} \equiv -\frac{\ln \mathcal{Z}}{\beta n} = -c_0 - c_1 \overline{q} - c_2 \overline{q}^2 - d_2 \beta \left(\overline{q}^2 + \frac{1}{n} \sum_{a \neq b} q_{ab}^2 \right) - c_3 \overline{q}^3 - e_3 \beta^2 \left(\overline{q}^3 + 3\overline{q} \frac{1}{n} \sum_{a \neq b} q_{ab}^2 + \frac{1}{n} \operatorname{Tr} q_{ab}^3 \right)$$
$$-c_4 \overline{q}^4 - d_4 \beta \left(\overline{q}^4 + \frac{1}{n} \sum_{a \neq b} q_{ab}^4 \right) + \dots$$

- But: extremization w.r.t. \overline{q}, q_{ab} makes all dangerous terms vanish!
- T=0: spin glass solution is replica symmetric, $q_{ab}=\overline{q}\equiv q_{EA}$
- *T>0:* replica symmetry breaking **Parisi solution:**

• Free energy contains terms that seem divergent as $\beta \to \infty$:

$$\mathcal{F} \equiv -\frac{\ln \mathcal{Z}}{\beta n} = -c_0 - c_1 \overline{q} - c_2 \overline{q}^2 - d_2 \beta \left(\overline{q}^2 + \frac{1}{n} \sum_{a \neq b} q_{ab}^2 \right) - c_3 \overline{q}^3 - e_3 \beta^2 \left(\overline{q}^3 + 3\overline{q} \frac{1}{n} \sum_{a \neq b} q_{ab}^2 + \frac{1}{n} \operatorname{Tr} q_{ab}^3 \right)$$
$$-c_4 \overline{q}^4 - d_4 \beta \left(\overline{q}^4 + \frac{1}{n} \sum_{a \neq b} q_{ab}^4 \right) + \dots$$

- But: extremization w.r.t. \overline{q}, q_{ab} makes all dangerous terms vanish!
- T=0: spin glass solution is replica symmetric, $q_{ab}=\overline{q}\equiv q_{EA}$
- *T>0:* replica symmetry breaking **Parisi solution:**

Parisi solution

• *T>0:* replica symmetry breaking **Parisi solution:**

[Parisi '79]

• Limiting case: $q_{ab} \longrightarrow q(x) = \begin{cases} \frac{x}{m} q_{EA} & 0 \le x < m \\ q_{EA} & m \le x < 1 \end{cases}$ q_{EA}

• Useful to think of 'break point parameter' m as a thermodynamic quantity (similar to β), characterizing the thermodynamic state

A puzzle about the entropy

• $\chi''(\omega) \sim \omega \Rightarrow$ no extensive entropy at T=0 (unlike SYK)

Q: How can the entropy vanish if there are exponentially many states?

A puzzle about the entropy

Q: How can the entropy vanish if there are exponentially many states?

configuration space

Answer:

- System is stuck in a valley.
- Thermodynamic entropy only characterizes fluctuations in that valley.
- We should also count the number of valleys around F!

A puzzle about the entropy

Q: How can the entropy vanish if there are exponentially many states?

Answer:

- System is stuck in a valley.
- Thermodynamic entropy only characterizes fluctuations in that valley.
- We should also count the number of valleys around F!

 Define density of pure states at free energy F:

$$\Omega(\mathcal{F}, \beta, N) \equiv e^{N\Sigma(\mathcal{F}, \beta)}$$

$$\Sigma(\mathcal{F},\beta)$$
: 'complexity'

configuration space

Total partition function:

$$Z = e^{-N\beta\mathcal{F}_{\text{tot}}} = \int d\mathcal{F} \, e^{-N\beta\mathcal{F}} \, \Omega(\mathcal{F}, \beta, N) = \int d\mathcal{F} \, e^{-N\beta\Phi(\mathcal{F})}$$

... where
$$\beta \Phi(\mathcal{F}) \equiv \beta \mathcal{F} - \Sigma(\mathcal{F}, \beta)$$

 Define density of pure states at free energy F:

$$\Omega(\mathcal{F}, \beta, N) \equiv e^{N\Sigma(\mathcal{F}, \beta)}$$

$$\Sigma(\mathcal{F}, \beta)$$
 : 'complexity'

Total partition function:

$$Z = e^{-N\beta\mathcal{F}_{\text{tot}}} = \int d\mathcal{F} \, e^{-N\beta\mathcal{F}} \, \Omega(\mathcal{F}, \beta, N) = \int d\mathcal{F} \, e^{-N\beta\Phi(\mathcal{F})} \approx e^{-N\beta\Phi(\mathcal{F}_*)}$$

... where $\beta \Phi(\mathcal{F}) \equiv \beta \mathcal{F} - \Sigma(\mathcal{F}, \beta)$ and \mathcal{F}_* satisfies: $\beta - \frac{d\Sigma}{d\mathcal{F}} \Big|_{\mathcal{F} = \mathcal{F}_*} = 0$

 Define density of pure states at free energy F:

$$\Omega(\mathcal{F}, \beta, N) \equiv e^{N\Sigma(\mathcal{F}, \beta)}$$

$$\Sigma(\mathcal{F}, \beta)$$
: 'complexity'

Total partition function:

$$Z = e^{-N\beta\mathcal{F}_{\text{tot}}} = \int d\mathcal{F} \, e^{-N\beta\mathcal{F}} \, \Omega(\mathcal{F}, \beta, N) = \int d\mathcal{F} \, e^{-N\beta\Phi(\mathcal{F})} \approx e^{-N\beta\Phi(\mathcal{F}_*)}$$

... where
$$\beta \Phi(\mathcal{F}) \equiv \beta \mathcal{F} - \Sigma(\mathcal{F}, \beta)$$
 and \mathcal{F}_* satisfies: $\beta - \frac{d\Sigma}{d\mathcal{F}} \Big|_{\mathcal{F} = \mathcal{F}_*} = 0$

c.f. standard thermodynamics: $\beta \mathcal{F} = \beta E - S(E)$

• Define density of pure states at free energy \mathcal{F} :

$$\Omega(\mathcal{F}, eta, N) \equiv e^{N\Sigma(\mathcal{F}, eta)}$$
 $\Sigma(\mathcal{F}, eta):$ 'complexity'

Using replicas, one can show:

$$\Sigma = \beta m^2 \partial_m \mathcal{F}(m, \beta)$$

c.f. standard thermodynamics: $S = \beta^2 \partial_{\beta} \mathcal{F}$

[Monasson '95] [Franz/Parisi '98] [Mezard/Parisi '99]

Complexity

• Define density of pure states at free energy \mathcal{F} :

$$\Omega(\mathcal{F}, \beta, N) \equiv e^{N\Sigma(\mathcal{F}, \beta)}$$

$$\Sigma(\mathcal{F}, \beta)$$
: 'complexity'

Using replicas, one can show:

$$\Sigma = \beta m^2 \partial_m \mathcal{F}(m, \beta)$$

[Monasson '95] [Franz/Parisi '98] [Mezard/Parisi '99]

• In the random Heisenberg magnet, we find:

$$\Sigma = \frac{12d_4}{e_3^2} q_{EA}^2 \left(d_2 + 6d_4 q_{EA}^2 + \ldots \right)^2 + \mathcal{O}(\beta^{-1})$$

In the low temperature spin glass ($q_{EA} \neq 0$) the extensive entropy of SYK gets replaced by an extensive complexity.

Holographic speculations

Holographic glasses

The following is a suggestion (haven't worked out details) inspired by earlier work:

[Anninos/Anous/Barandes/Denef/Gaasbeek '11] [Anninos/Anous/Denef/Konstantinidis/Shaghoulian '12] [Anninos/Anous/Denef/Peeters '15] [Anninos/Anous/Denef '16] [Anous/FH '21]

▶ How to accommodate for an extensive landscape of spin glass states in holography?

Holographic glasses

The following is a suggestion (haven't worked out details) inspired by earlier work:

[Anninos/Anous/Barandes/Denef/Gaasbeek '11] [Anninos/Anous/Denef/Konstantinidis/Shaghoulian '12] [Anninos/Anous/Denef/Peeters '15] [Anninos/Anous/Denef '16] [Anous/FH '21]

▶ How to accommodate for an extensive landscape of spin glass states in holography?

Hint: in 4d N=2 supergravity, there exists a landscape of fragmented multi-centered black holes

[Denef '00] [Cardoso/Wit/Kappeli/Mohaupt '00] [Bates/Denef '11]

AdS₂ fragmentation

Near horizon of 4d extremal two-RN black holes with fixed charge:

$$ds^{2} = -V^{-2}dt^{2} + V^{2}d\vec{x}^{2}$$

$$\star F = dt \wedge dV^{-1}$$

$$V = \frac{Q_{1}}{|\vec{x} - \vec{x}_{1}|} + \frac{Q_{2}}{|\vec{x} - \vec{x}_{2}|}$$

[Majumdar/Papapetrou '47]

[Brill '92]

[Maldacena/Michelson/ Strominger '98]

- Large $|\vec{x}|$: same as geometry with a single throat with charge $Q_1 + Q_2$
- For $\vec{x} \to \vec{x}_{1,2}$: fragmentation into two (or more) AdS₂ regions

AdS₂ fragmentation

Near horizon of 4d extremal two-RN black holes with fixed charge:

$$ds^{2} = -V^{-2}dt^{2} + V^{2}d\vec{x}^{2}$$

$$\star F = dt \wedge dV^{-1}$$

$$V = \frac{Q_{1}}{|\vec{x} - \vec{x}_{1}|} + \frac{Q_{2}}{|\vec{x} - \vec{x}_{2}|}$$

- [Majumdar/Papapetrou '47]
- [Brill '92]
- Maldacena/Michelson/ Strominger '98]
- Moduli space of geometries, which locally minimize free energy
 - related to complexity of spin glass landscape?
- Non-zero average dipole moment
 - related to order parameter q_{EA} ?

The p-spin spherical model

[Anous/**FH** 2106.03838]

Brane constructions

- Certain string theory compactifications with D-branes lead to quiver quantum mechanics with a sector similar to a disordered system:
 - Chiral and vector multiplets
 - SUSY constrains structure of Lagrangian —> bosonic potential:

Consider a toy model, which resembles this structure!

The p-spin spherical model

$$Z[J_{i_1...i_p}] = \int D\sigma_i Dz \exp \left\{ -\int_0^\beta d\tau \left[\frac{M}{2} \dot{\sigma}_i(\tau) \dot{\sigma}_i(\tau) + \sum_{i_1 < ... < i_p} J_{i_1...i_p} \sigma_{i_1}(\tau) \dots \sigma_{i_p}(\tau) \right] \right\}$$

$$+i\int_{0}^{\beta} d\tau \, z(\tau) \left(\sum_{i=1}^{N} \sigma_{i}(\tau)\sigma_{i}(\tau) - N \right) \right\}$$

 $P(J_{i_1...i_p}) \propto \exp\left[-\frac{N^{p-1}}{p!} \frac{J_{i_1...i_p}^2}{J^2}\right]$

"spherical constraint"

- Dimensionless parameters: βJ , MJ
- Nonlinear sigma-model with spherical target space
- Spherical constraint is crucial for stability of such a bosonic model

p-spin model: summary of features

Phase diagram:

- Spin glass order requires both: small thermal and quantum fluctuations
- ightharpoonup Spin glass order is strong (u o 1 as T o 0)

- ightharpoonup Strong coupling (large eta J and MJ):
 - Complexity is again finite and extensive: $\Sigma = \frac{1}{2} \log(p-1) \frac{p-2}{p}$
 - Gapless spectrum $\sim \omega$, power-law scaling, reparametrization invariance
 - Non-zero but suppressed Lyapunov exponent: $\lambda_L \sim \frac{2\pi}{\beta} \, (p-2) \, \left| \, \frac{5}{24\beta \mathcal{J}} + \ldots \right|$

Summary

Summary

SU(M) Heisenberg magnet

$$H = \frac{1}{\sqrt{NM}} \sum_{i < j=1}^{N} J_{ij} \, \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$$

SU(M) spin operators

- Physical & closely related to (complex) SYK model
- Weak spin glass order in fermionic representation
- Analytical treatment of transition from 'deconfined' SYK spin liquid to 'confined' spin glass

p-spin spherical model

$$H = \sum_{i_1 < \ldots < i_p} J_{i_1 \cdots i_p} \sigma^{i_1} \cdots \sigma^{i_p}$$
 bosonic 'rotors': $\frac{1}{N} \sum_{i=1}^N \sigma^i \sigma^i = M$

- Two-dimensional parameter space: βJ , MJ
- Analytically tractable in strongly coupled spin glass
- Intricate dependence of λ_L on couplings

AdS₂ fragmentation: interpretation of complexity, order parameters, ...?