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Motivation

+ Disorder and averaging play crucial role in recent AdS/CFT discussions

— low-energy dynamics of

JT gravity SYK-type ensembles

AdS3 pure gravity, CFT ensembles,

U(1) gravity microcanonical averaging

wormholes, spectral form factor,

gravitational <= unitary Page curve,
instantons statistics of OPE coefficients

Desirable to understand other characteristic properties of disordered
systems and consequences for gravity!
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Introduction



SYK model: important features

» N Majorana fermions with random, N
Gaussian couplings H = - Z St Vi VR
i3k, 1=1
» Solvable for N > 5J > 1 (Jiji =0, JZ, =J?/N?)

* ‘Mean field’ description at large N in
terms of bilocal 2-point function
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* Emergent reparametrization invariance: 7 — f(7)

* Broken by saddle point solutionto f € SL(2,R)
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+ The pseudo-Goldstone associated with reparametrizations

T — f(7) has a ‘Schwarzian’ effective action:

N
Ischw. X —7/d7 {f(7), 7}

* Same action also describes dilaton gravity in AdS2

* Symmetry breaking pattern implies near-extremal entropy of the form

N
S:SO_I_#ﬁ—j

from Schwarzian

* Schwarzian gives universal leading contribution to out-of-time-order

correlation functions (OTOCSs)

OTOC = (¢i(t)1;(0)[i(t)1;(0)) ~ a0 — % o (55 +)t



Spin glasses

» Many disordered systems exhibit a spin glass phase at low temperatures

» Random couplings lead to frustration,
complicated free energy landscape

af\ﬂﬂ\ﬂ\ N

VT

configuration space

» Many metastable spin glass states separated by high barriers



Spin glasses

To detect spin glass phase, consider ‘temporal’ order parameter
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GGoals

+ (Characteristic features of SG phase: many metastable states, slow
dynamics, inability to reach equilibrium, loss of ergodicity, ...

+» Understand low temperature properties (with AdSz2 gravity in mind):
» Fate of zero temperature entropy”
» Fate of reparametrization symmetry?”
» Behavior of Lyapunov exponent?

+ Understand within the nAdSs/nCFT; paradigm



Overview

N
| will mention two (quantum) generalizations of Hgk = \/1_ Z Jijolo!
2,J=1
SU(M) Heisenberg magnet p-spin spherical model

E ip
zj ) 1 Zp "o

N

SU(M) spin operators bosonic ‘rotors’: D _o'c' =M
1=1
» Physical & closely related to » Motivated by higher dimensional
(complex) SYK model constructions
» Can see weak spin glass order » Two dimensionless parameters:
in fermionic representation B8J, MJ (thermal & guantum

fluctuations)



Random SU(M)
Helisenberg magnet

[Christos/FH/Sachdev 2110.00007]



Random SU(M) Heisenberg magnet

1 L X g,
H:\/W Z Z Jiijé“(@)Sg(J)

i<ji=1a,B=1 /

SU(M) operators on sites |, j

. . 1
* Fermionic spinon representation: S5 = fgfo‘ —3 Og (fl f& = M/2)

 U(1) gauge invariance:  f*(7) — (™) ()



Random SU(M) Heisenberg magnet

1 L X g,
H:\/W Z Z JijSE‘(Z)Sg(J)

i<j=1a,B=1 /

SU(M) operators on sites i/, J

. . 1
* Fermionic spinon representation: S5 = fgfo‘ —3 Og (fl f& = M/2)

 U(1) gauge invariance:  f*(7) — (™) ()

Basic idea: » We always take large N
» For M — oo: find equations of (complex) SYK

» For finite ML: (weak) spin glass order



Random SU(M) Heisenberg magnet

H — \/iz ZJUSB )S2(4)

1<j=1 a,B=1 /

SU(M) operators on sites i/, J

. . 1
* Fermionic spinon representation: S5 = f[‘;fo‘ —3 Og (fl f& = M/2)

 U(1) gauge invariance:  f*(7) — (™) ()

 Want to compute disorder averaged (quenched) free energy:

BF = —Tog 2

Z[Jw] :/DfaD)\ exp{ —/dT ZfT 8 fa \/72{]” Sﬁ (.])

i / dr Y M@ (FL0F () - M/z)}



Replica trick

o Strategy: use replica trick

log Z = lim 0,2" =  BF=—1limd,2"

n—0 n—0

{f% A —A{fd At (a=1,...,n)

* |ntroduce bilocal spinon collective field (with replica indices):

GabTT __Zf fba

.. and the spinon self-energy %, (7, ')
.. and a Hubbard-Stratonovich field Qas(7)



» Large N effective action for G, X, Q :

s _ v | -
= 7 /deT ;Qab(T_T)Q

with ‘single-site’ partition function:

11Q] = ~logdet { = dau[0r + iXa(7)]O(r = 7') = Sap(r, 7') | — ik / dry " Aa(7)
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a,b



» Large N effective action for G, X, Q :

: _ _
% — M /deT/ ZQab(T—T/)Q
a,b

N 4

with ‘single-site’ partition function:

11Q] = ~logdet { = dau[0r + iXa(7)]O(r = 7') = Sap(r, 7') | — ik / dry " Aa(7)

k2 2
2J /deT’ ZQab(T, T’)) /DGabDZabD)\a e MIQ
a,b

2
+ /deT’ Z [%Qab(T — 7Y Gap (T, TG (T, 7) — L (7, 7" ) Gu (T, 7’)]
a,b

» Large N saddle point equation:

k? 1
(T —7) =" — ——= | DGupyDE Do Gop(1,7')Gra (7', 7) e M€
Qap(T —T) 7 Zf[Q]/ G b bDAo Gop (T, 7 )G (T, T) €



» Large N effective action for G, 3, @ :

: _
% — J4M /deT/ ZQab(T—T/)Q
a,b

N

with ‘single-site’ partition function:

11Q] = ~logdet { = dau[0r + iXa(7)]O(r = 7') = Sap(r, 7') | — ik / dry " Aa(7)

k2 2
2J /deT’ ZQab(T, T’)) /DGabDZabD)\a e MIQ
a,b

2
+ /deT’ Z [%Qab(T — 7Y Gap (T, TG (T, 7) — L (7, 7" ) Gu (T, 7’)]
a,b

» Large N saddle point equation:

k? 1
(T —7) =" — ——= | DGupyDE Do Gop(1,7')Gra (7', 7) e M€
Qap(T —T) 7 Zf[Q]/ G b bDAo Gop (T, 7 )G (T, T) €
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evaluate for large M: saddle + fluctuations



» Large M saddle point equations:

Yab(T) = J?Qap(T)Gap (T)

Qab(7) = —Gap(7)Gpa(—T) Gop(iw) = [iwdap — Tap(iw)]



» Large M saddle point equations:

Sab(T) = T Qap(T)Gap (T)

Qab(7) = —Gap(7)Gpa(—T) Gop(iw) = [iwdap — Tap(iw)]

» Ga has to be replica diagonal. Theretore, at large M:

(7)
G (iw)

—J?G(1)*G(-T1)
liw — Y (iw)]

—> e.0.m. of complex SYK



» Large M saddle point equations:

Yab(T) = J?Qap(T)Gap (T)

Qab(7) = —Gap(7)Gpa(—T) Gop(iw) = [iwdap — Tap(iw)]

Ga, has to be replica diagonal. Therefore, at large M:

(7)
G(iw)

—J?G(1)*G(-T1)
liw — Y (iw)]

—> e.0.m. of complex SYK

» The solution is a gapless ‘fractionalized’ spin liquid exhibiting
the SYK physics that has been explored since
and all its connections to AdS2 gravity.



Q(r) = ~G(r)G(~7)

Infinite vs. finite M S(r) = —J2G(r)*G(~7)

G(iw) = [iw — B(iw)]

« Spin-spin spectral function: Q(r) :/wd_wxu(w) o
0 7
Mooo: X))~ B 1= Sl -]

[\

conformal” long-time ‘Schwarzian’ correction
behavior (Q(7) ~ 1/|7])

| | | | |
—— Numerics

X// (w) -

--- Theory

figure: oy



Q(r) = ~G(r)G(~7)

Infinite vs. finite M 5(r) = —J2G(r)2G(~7)
G(iw) = liw — X(iw)]*
> dw

» Spin-spin spectral function: Q(T):/ L @) e

0

M — oo :

[\

conformal” long-time ‘Schwarzian’ correction
behavior (Q(r) ~ 1/|7])

 Finite M behavior AN | . , —
looks different: X)) | ™ 6(w)

(cartoon)

» Can we understand this
analytically in the simple
fermionic description?




Finite M corrections

e Finite M: Gaup, 2ap, Qap Need not be replica diagonal

e Ansatz: Qab(T) — [Q(T) + ﬁ] 5a,b + Gab (Qaa — O)

\

spin glass order parameters

 Compute large-N effective action perturbatively in q, qab:

S[QT(;\)[,Eqab] _ (ﬁZ)Q (q2 +izq§b) [1 _ J_2@(w =0)%| +...

2
onset of spin glass order: 1 = JMQ(O)2 S T~ Je VM



Consistency of free energy

* Free energy contains terms that seem divergent as 38 — oo:

In Z B 1
F = _ﬁ—n = —Cgp — €19 — C2q —dgﬁ (q + — anb> — C3q —635 ( 3+3q Z%b"’ nTI’C]ab)

a#b a;éb

—c4q'—dy 3 ( + = Z%b) + -

a#b
e But: extremization w.r.t. 4,4.» makes all dangerous terms vanish!

» T=0: spin glass solution is replica symmetric, gap = ¢ = qE



Consistency of free energy

Free energy contains terms that seem divergent as g — oo:

In Z
bn

F=———=—cy—c1q— 20" —daf3 (

—c4q*—dy B (

But: extremization w.r.t. ¢,4«» makes all dangerous terms vanish!

a#b

q- + — ZQab

a;éb

+ — Z%b) -

) — C3q —635 (

1
—3
3q T
+ q — ZQab+n I.C]ab

a#b

T=0: spin glass solution is replica symmetric, gab =4 = qE

I>0: replica symmetry breaking Parisi solution:
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Consistency of free energy

Free energy contains terms that seem divergent as g — oo:

In Z B 1
F = _ﬁ—n = —Cgp — €19 — C2q —dgﬁ (q + — anb> — C3q —635 ( 3+3q Z%b"’ nTI’C]ab)

a7#b a;éb

—c4q'—dy 3 ( + = Z%b) + -

a#b
But: extremization w.r.t. ¢,4«» makes all dangerous terms vanish!
T=0: spin glass solution is replica symmetric, gub = ¢ = qE

I>0: replica symmetry breaking Parisi solution:
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Consistency of free energy

Free energy contains terms that seem divergent as g — oo:

In Z B 1
F = _ﬁ—n = —Cgp — €19 — C2q —dgﬁ (q + — anb> — C3q —635 ( 3+3q Z%b"’ nTI’C]ab)

a7#b a;éb

—c4q'—dy 3 ( + = Z%b) + -

a#b
But: extremization w.r.t. ¢,4«» makes all dangerous terms vanish!
T=0: spin glass solution is replica symmetric, gub = ¢ = qE

I>0: replica symmetry breaking Parisi solution:

(] \ (] \

40 | A, / q1 | Am, /
1 2




Parisi solution

 [>0: replica symmetry breaking Parisi solution:

y. A
( Aml qo \ ( Am2 q1 \
Qab — ) Amlz ) Am —
qo Aml / di Amg /
\ Am1’7 \ Am2’7
(T O < 4
C —(dEA <z<<m g aAlkl-----
e Limiting case:  qw — qlx) = m BAT,
\ dE A m<x < 1 E
: >
™m

» Useful to think of ‘break point parameter’ m as a thermodynamic
quantity (similar to 8), characterizing the thermodynamic state



A puzzle about the entropy

» xX"(w) ~w = no extensive entropy at T=0 (unlike SYK)

A

.
o ®
.
.
.
o ®
.

Entropy S(7T)

[ NMT)

ng
qea # 0

N\

~ ~
NM (0.464848 L

+%T+“>

kspin glass )

kSYK spin liquid )

» Q: How can the entropy
vanish if there are
exponentially many states?




A puzzle about the entropy

Jl_

» Q: How can the entropy
vanish if there are

exponentially many states?

configuration space
Answer:

e System is stuck in a valley.

 Thermodynamic entropy only
characterizes fluctuations in
that valley.

* \We should also count the
number of valleys around F !



A puzzle about the entropy

Jl_

» Q: How can the entropy
vanish if there are
exponentially many states?

configuration space
Answer:

e System is stuck in a valley.

 Thermodynamic entropy only
characterizes fluctuations in
that valley.

* \We should also count the
number of valleys around F !



Complexity

* Define density of pure states T
at free energy F:

N
N
O(F,B,N) = NP5 bl \ I | /\/\

N(F,B): ‘complexity’ T \\W“W U

IZZI‘.’.ZIZIII?’.J.’.g::&::flﬂiiﬁ:::' .IZIIII&IZIII

1 : configuration space
e Total partition function: & D

7 = e VBT — / dF e NPT Q(F,B,N) = / dF e NF2F)

.. where B®(F) = BF —X(F,B)

dF



Complexity

* Define density of pure states T
at free energy F: ) \ |
|
Q(JT"a 57 N) - GNE(}—’[?) h \j\vf/\ﬂ | ’\ V\W {\/\
Y(F,B): ‘complexity’ m | \J \ \W J\lv
ZZZZZZ‘.’.ZIZIZZZZ?’.J.’.gZZR!JZZZZI'}.UQEKZIIZ' .ZZZZZZZZZZZ&ZZZZZZZZZI dF

5 | figurati
» Total partition function: CONTHSITALON Space

7 = e NP tor :/d]-"e_NBFQ(]:,B,N) :/d]:e_NM)(F) ~ e NPT

2.
...where [®(F) = (F — X(F,B) and F, satisfies: [ — 37__ =0
F=F.



Complexity

* Define density of pure states T
at free energy F: ) \ |
I/
|
O(F,B,N) = V>0 | \Mﬂ U V\W I\
Y(F,B): ‘complexity’ \A U \ J\IV
ZZZZZZ‘.’.ZIZZZZZZZ?’.J.’.gZZZ!JZZZZZZ'}.U;iﬁiiiii' s W A F

5 | figurati
» Total partition function: CONTHSITALON Space

7 = e NP tor :/d]-"e_NBFQ(]:,B,N) :/d]:e_NM)(F) ~ e NPT

2.
...where [®(F) = (F — X(F,B) and F, satisfies: [ — 37__ =0
F=F.

— __
e

c.f. standard thermodynamics:  BF = SE — S(E)



Complexity

* Define density of pure states T
at free energy F:

N
11|
O(F,B,N) = V=FP) bl \ I | n/\

Y(F,B): ‘complexity’ \]\I'V Vu, V | \ \W I ﬂ\j
AT T g::&::::'}ﬂ{@%:::' .:::::::&:::::: dF

configuration space

* Using replicas, one can show:

Z — 6m2amf(m7 B ) [Monasson '95] [Franz/Parisi '98] [Mezard/Parisi ’99]

N __”
—_—

c.f. standard thermodynamics: S = 5203 F



Complexity

* Define density of pure states T
at free energy F: ) \ |
|
QF,B,N) = V=50 W V\w n/\
Y(F,B): ‘complexity’ m | \J \ \W M/
IZZI‘.’.ZIZIII?’.J.’.g::ﬁiiiiii'}ﬂ{i&:::' .ZIIIII&ZIIIIZ dF

* Using replicas, one can show: configuration space

Z — BmQamf(fn% ﬁ ) [Monasson '95] [ Franz/Parisi '98] [ Mezard/Parisi '99]

* In the random Heisenberg magnet, we find:

12d 2 _
5 — 624 qpa (do +6dagps +...)" + OB

3

In the low temperature spin glass (g4 # 0 ) the extensive entropy
of SYK gets replaced by an extensive complexity.




Holographic
speculations



Holographic glasses

» The following is a suggestion (haven't worked out details) inspired by
earlier work:

» How to accommodate for an extensive landscape
of spin glass states in holography?



Holographic glasses

» The following is a suggestion (haven't worked out details) inspired by
earlier work:

» How to accommodate for an extensive landscape
of spin glass states in holography?

» Hint: In 4d N=2 supergravity,
there exists a landscape of
fragmented multi-centered
black holes

figure:



AdS:z fragmentation

» Near horizon of 4d extremal two-RN black holes with fixed charge:

ds’ = —V 72dt? + V2dr? Q1 + Qs
*xF =dt NdV 1 \ ﬁ

(1 ()2 ﬁ:ﬂ c N AdSs x S?

 Large |Z|: same as geometry with a single throat with charge @i + Q-

e For ¥ — 71, fragmentation into two (or more) AdS2 regions



AdS:z fragmentation

» Near horizon of 4d extremal two-RN black holes with fixed charge:

ds’ = —V 72dt? + V2dr? Q1 + Qs
*xF =dt NdV 1 \ ﬁ

(1 ()2 ’a—;ﬂ c N AdSs x S?

1 sz

» Moduli space of geometries, which locally minimize free energy

— related to complexity of spin glass landscape”
» Non-zero average dipole moment
— related to order parameter qea”?




The p-spin
spherical model

[Anous/FH 2106.03838]



Brane constructions

+ (Certain string theory compactifications with D-branes lead to quiver quantum

mechanics with a sector similar to a disordered system:
e Chiral and vector multiplets

e SUSY constrains structure of Lagrangian —> bosonic potential:

2
+ 3 i<9a—§ :W)
9y M -

a

| |

superpotential FY parameters
W(p) = Qujrdi o507 + - ..

» Consider a toy model, which resembles this structure!



The p-spin spherical model

p -M |
Z\Jiy i) :/DaiDz exp{ —/O dr 702 ) + Z iy 0ir (T) ..oy (T)

+z/6d7z (Zaz X >}

‘spherical constraint”

* Dimensionless parameters: B8J, MJ
* Nonlinear sigma-model with spherical target space

e Spherical constraint is crucial for stability of such a bosonic model



p-spin model: summary of features

» Phase diagram:

1/(MJ) paramagnetic

(u=0, m=1)

» Spin glass order requires both: small
thermal and quantum fluctuations

» Spin glass order is strong
(u—>1 as T'— 0)

spin glass ™,
(0<u,m<1)

T/J

» Strong coupling (large B8J and MJ):

o C . 1 — 2
 Complexity is again finite and extensive: Y = 5 log(p—1) — p—~<
p
* Gapless spectrum ~ w, power-law scaling, reparametrization invariance

_ 27 5
Non-zero but suppressed Lyapunov exponent: X\ ~ 3 (p —2) [W + .. ]



Summary



Summary

SU(M) Heis_enberg magnet

Z]

/

SU(M) spin operators

Z<j 1

» Physical & closely related to

(complex) SYK model

» Weak spin glass order in fermionic
representation

» Analytical treatment of transition

from ‘deconfined’ SYK spin liquid to
‘confined’ spin glass

p-spin spherical model

» [Two-dimensional parameter

space: 5J, MJ

» Analytically tractable in strongly

coupled spin glass

> Intricate dependence of Aj, on

couplings

AdS2 fragmentation: interpretation of complexity, order parameters, ... ?



