Quantum Information and the Black Hole Interior

Felix Haehl (U. of Southampton)

Mostly based on work with: Y. Zhao

Outline

- 1. Review: black holes and quantum information
- 2. Quantum circuit model of the interior
- 3. Collisions behind the horizon
- 4. Operator size
- 5. Conclusion

 Dynamics of spacetime geometry in extreme situations: quantum effects can be important or dominant

Cosmology

The beginning of the universe...?

Black holes

Black hole interior?

Curvature singularity?

Thermodynamic properties?

The information problem

 Black holes look like thermodynamic systems with energy, entropy, temperature [Bekenstein '72] [Hawking '74]

- Emit Hawking radiation and eventually evaporate
- Hawking radiation is thermal ("scrambled")
 - —> information seems to be destroyed

Essence of the information paradox:

Tension between unitary quantum evolution and thermodynamic properties of the horizon (general relativity + Hawking radiation).

The information problem

Tension between unitary quantum evolution and thermodynamic properties of the horizon (general relativity + Hawking radiation).

- Enormous progress...
 - [Penington '19] [Almheiri/Engelhardt/Marolf/Maxfield '19]
- ...and still many confusions

 Core theme: thermodynamic, statistical, and quantum information theoretic properties of black holes

Black Holes Excel at Information Theoretic Tasks

The "densest hard drives":

maximum entropy, given mass and size

[Bekenstein '81]

The "most ideal fluids": saturate shear viscosity bound

[Kovtun/Son/Starinets '04]

The "fastest information scramblers":

take the shortest time to make information
inaccessible to local measurements [Sekino/Susskind '08]

Holographic duality

Quantum gravity in asymp. AdS_{d+1}

Conformal QFT_d

class. & qu. gravity

black holes

grav. dynamics

geometry, locality, unitarity issues

strongly coupled CFT

thermal states

entropy, hydrodynamics, chaos

entanglement, quantum information

Geometry and Entanglement

- Use AdS/CFT to learn about the fate of an infalling observer, black hole interior, and the singularity
- Setup: asymptotically AdS black hole

$$ds^{2} = -\frac{4\ell^{2} du dv}{(1+uv)^{2}} + \ell^{2} \left(\frac{1-uv}{1+uv}\right)^{2} d\vec{x}^{2}$$

connected geometry

$$|{
m TFD}
angle_{LR}=\sum_k e^{-rac{eta}{2}E_k}\,|E_k
angle_L\otimes|E_k
angle_R$$
 hig

highly entangled CFT state

- Entanglement of the dual CFT state is believed to be crucial for having a connected geometry.
 - [Ryu/Takayanagi '06]: [Hubeny/Rangamani/Takayanagi '07]

$$S_{\mathrm{vN}}(
ho_A) = rac{\mathrm{area}(A)}{4G_N}$$

$$\rho_A = \operatorname{Tr}_{A^c}(\rho)$$
$$S_{vN}(\rho) = -\operatorname{Tr}(\rho \ln \rho)$$

• Perturbing ρ_A constrains area(A) => can derive local Einstein equations from entanglement

[Faulkner/Guica/Hartman/Myers/Van Raamsdonk '13] [Faulkner/**FH**/Hijano/Parrikar/Rabideau/Van Raamsdonk '17]

- Quantum corrections: $S_{\text{vN}}(\rho_A) = \frac{\operatorname{area}(\widetilde{A})}{4G_N} + \underbrace{\mathcal{O}(G_N^0) + \mathcal{O}(G_N) + \ldots}_{S_{\text{bulk}}}$ [Faulkner/Lewkowycz/Maldacena '13]
 [Engelhardt/Wall '14] (crucial for info. paradox!)
- [Maldacena/Susskind '13]:

EPR

Einstein-Rosen bridge

entangled qubits

▶ ER = EPR Can we test this??

$$|\text{TFD}\rangle_{LR} = \sum_{k} e^{-\frac{\beta}{2}E_k} |E_k\rangle_L \otimes |E_k\rangle_R$$

Represent by EPR pairs (qubits):

[Olena Shmahalo/Quanta Magazine]

	$ 00\rangle + 11\rangle$	
CFT,		CFT _R
L	:	11

- To model time evolution we perform operations on the qubits
 —> construct a quantum circuit
 - 2-qubit quantum gates:

 ${\cal U}$ can be **undone** by either side alone: act with ${\cal U}^{-1}$ on R or L

▶ ER = EPR Can we test this??

$$|\text{TFD}\rangle_{LR} = \sum_{k} e^{-\frac{\beta}{2}E_k} |E_k\rangle_L \otimes |E_k\rangle_R$$

Represent by EPR pairs (qubits):

[Olena Shmahalo/Quanta Magazine]

	00 angle + 11 angle	
CFT		CFT_
		R
	:	

- To model time evolution we perform operations on the qubits
 - —> construct a quantum circuit

Model for black hole time evolution: random unitary all-to-all circuit

Information spreads exponentially fast through the circuit:

Model for black hole time evolution: random unitary all-to-all circuit

- Any gate could be implemented by either side
- Evolution in t_L can be **undone** by inverse evolution in t_R
- **Depth** of circuit is $t_R t_L$
- Large depth means: the state of $\operatorname{CFT}_L \cup \operatorname{CFT}_R$ has a high computational complexity [Susskind '14]
- Note: the state of either CFT alone is always thermal
- Depth keeps increasing long after thermalisation

Similar features in the TFD and black hole:

$$e^{it(H_R - H_L)} |\text{TFD}\rangle_{LR} = |\text{TFD}\rangle_{LR}$$

 H_R

$$|\text{TFD}(t)\rangle = e^{it\frac{H_R + H_L}{2}}|\text{TFD}\rangle = \sum_k e^{-\left(\frac{\beta}{2} - it\right)E_k}|E_k\rangle_L \otimes |E_k\rangle_R$$

but still: $\operatorname{Tr}_L(|\operatorname{TFD}(t)\rangle\langle\operatorname{TFD}(t)|) = e^{-\beta H_R}$

- Evolving TFD with $H_L + H_R$ explores more of the interior
- This is invisible from the point of view of either CFT alone. Need $\operatorname{CFT}_L \cup \operatorname{CFT}_R$ to probe into the interior

Circuit / black hole connection

- Proposal:
 - quantum circuit represents evolution of black hole interior
 - (2) Depth of circuit (#gates) is proportional to spatial volume of interior

[Hayden/Preskill '07][Susskind '14]

 N.b.: (1) is a 'quantum info' description of time evolution along the Schwinger-Keldysh contour:

$$U[J_R] \longrightarrow U^{\dagger}[J_L]$$

$$\mathcal{Z}[J_R, J_L] = \operatorname{tr}\left(U[J_R] \, \rho_{\beta}^{\frac{1}{2}} \, U^{\dagger}[J_L] \, \rho_{\beta}^{\frac{1}{2}}\right)$$

Quantum butterfly effect

- \triangleright Evolution in t_L can be **undone** by inverse evolution in t_R ...
- ...unless we change the state on one side (add a perturbation)!

Epidemic model for "operator growth"

[Susskind/Zhao '14] [Roberts/Stanford/Streicher '18]...

- Quantum butterfly effect: small perturbation has exponential effect on the future system
- R's p.o.v.: go back in time —> insert tiny perturbation —> evolve forward —> get very different state

Quantum butterfly effect

- \triangleright Evolution in t_L can be **undone** by inverse evolution in t_R ...
- ...unless we change the state on one side (add a perturbation)!

Epidemic model for "operator growth"

$$\frac{n_{\mathrm{perturbed}}(t_R)}{n_{\mathrm{tot}}} \sim \frac{1}{1 + e^{-(t_R - t_{wR} - t_*)}} \approx \Theta(t_R - t_{wR} - t_*)$$

$$t_* = \frac{\beta}{2\pi} \log\left(\frac{S}{\delta S}\right)$$
 "scrambling time"

Shockwave geometry

In gravity: send a signal from one side into the black hole

Result is a shockwave geometry:

[Dray/'t Hooft '85]...[Shenker/Stanford '13] [Stanford/Susskind '14]

- Proposal:
 - (3) Gates affected by perturbation represent the part of the interior geometry accessible by CFT_R only.

- Send too late: no collision
- Send earlier: collision in the interior
- Send very early: highly boosted, expect strong backreaction
- Correspondingly, overlapping perturbations in circuit:

- Send too late: no collision
- Send earlier: collision in the interior
- Send very early: highly boosted, expect strong backreaction
- Correspondingly, overlapping perturbations in circuit:

- Send too late: no collision
- Send earlier: collision in the interior
- Send very early: highly boosted, expect strong backreaction
- Correspondingly, overlapping perturbations in circuit:

- Send too late: no collision
- Send earlier: collision in the interior
- Send very early: highly boosted, expect strong backreaction
- Correspondingly, overlapping perturbations in circuit:

- Send too late: no collision
- Send earlier: collision in the interior
- Send very early: highly boosted, expect strong backreaction
- Correspondingly, overlapping perturbations in circuit:

- Puzzle: two signals sent into black hole can meet, even though the dual CFTs don't interact.
- t_{wL}

- Send too late: no collision
- Send earlier: collision in the interior
- Send very early: highly boosted, expect strong backreaction
- Correspondingly, overlapping perturbations in circuit:

Proposal:

(4) Overlap in circuit describes gravitational interaction. It represents post-collision spacetime.

 $\#(\text{healthy gates}) \propto \text{Vol(post-coll.)}$

Circuit model predicts: post-collision volume becomes exponentially small after high-energy collision

[**FH**/Zhao '22]

Checks

Simplest check: spherically symmetric shocks in BTZ

$$ds^{2} = -\frac{4\ell^{2}}{(1+uv)^{2}} dudv + r_{H}^{2} \frac{(1-uv)^{2}}{(1+uv)^{2}} d\phi^{2}$$

- Post-collision geometry remains locally AdS3
- ▶ Glue BTZ patches along shock [Dray/'t Hooft '85]...[Shenker/Stanford '13]

Very good match:

- More non-trivial checks: localized shocks (and higher dimensions)
- Add spatial direction(s) to the quantum circuit:

Quantum chaos spreads ballistically with butterfly velocity v_B

We have the same 4 regimes as before:

Prediction

(head-on, d=2)

$$x_{wL} = x_{wR} = 0, \ t_{wL} = -50$$

 $\delta S_1 = 1, \ \delta S_2 = \sqrt{S}$

- Small Δt : checked linear growth of Vol(x) numerically for localised shocks in planar/hyperbolic black holes
- Large Δt : ?

Late time regime in gravity

- At late times: derive upper bound on volume using Raychaudhuri eq.
 - Single shock:

$$ds^{2} = -\frac{4\ell^{2}}{(1+u\bar{v})^{2}} dudv + r_{H}^{2} \left(\frac{1-u\bar{v}}{1+u\bar{v}}\right)^{2} d\vec{x}^{2}$$

$$\overline{v} = v + \Theta(u)h(x)$$

$$\overline{v} = v + \Theta(u)h(x)$$
 $h(x) \sim \frac{\delta S_1}{S} e^{-t_{wL} - \frac{1}{v_B}|x - x_{wL}|}$

Raychaudhuri:
$$\dot{\theta}=-\frac{\theta^2}{d-1}-\sigma^2+\omega^2-R_{ab}K^aK^b+\dot{K}^a{}_{;a}$$

across shock:
$$T_{uu} \sim \delta(u)$$

$$T_{uu} \sim \delta(u)h(x) \Rightarrow \Delta\theta \sim -h(x)$$

after shock:
$$\dot{\theta} \leq -\frac{\theta^2}{d-1} \Rightarrow L \leq -\frac{d-1}{\theta} \sim \frac{1}{h(x)}$$

Late time regime in gravity

- At late times: derive upper bound on volume using Raychaudhuri eq.
 - Two shocks, ansatz:

$$ds_{\rm post-coll.}^2 \approx -\frac{4\ell^2}{(1+uv)^2}\,dudv + \tilde{r}_H^2(x)\left(\frac{1-uv}{1+uv}\right)^2d\vec{x}^2$$

$$\text{strength of collision:} \quad h_1(x)h_2(x) \sim \frac{\delta S_1\,\delta S_2}{S^2}\,e^{\Delta t(x)} \qquad t_{wL}$$

Raychaudhuri =>
$$L_1L_2 \leq \frac{\ell^2}{h_1(x)h_2(x)}$$

=> analytical upper bound on Vol(post-collision)

Gravity upper bound vs. circuit prediction

(finite impact parameter, AdS3)

(finite impact parameter, AdS5)

- Spread of perturbation through circuit: "growth" of an operator
- Make this more precise
- Toy model: Sachdev-Ye-Kitaev quantum mechanics
 - N Majorana fermions with random, Gaussian all-to-all couplings
 - Emergent conformal symmetry (time reparametrizations $\tau \to f(\tau)$) in the IR
 - Symmetry is spontaneously & explicitly broken. Effective action for Goldstone:

$$I_{\text{eff.}}[f] \propto -\frac{N}{J} \int d\tau \, \text{Schw}(f(\tau), \tau)$$

Same action describes AdS₂ dilaton gravity

$$H = -\sum_{ijkl}^{N} j_{ijkl} \, \psi_i \psi_j \psi_k \psi_l$$

$$\overline{j_{ijkl}} = 0 \,, \quad \overline{j_{ijkl}^2} = J^2/N^3$$

[Sachdev/Ye '93] [Kitaev '15] [Maldacena/Stanford '16] ...

- Spread of perturbation through circuit: "growth" of an operator
- Make this more precise
- Toy model: Sachdev-Ye-Kitaev quantum mechanics
 - N Majorana fermions with random, Gaussian all-to-all couplings
 - Emergent conformal symmetry (time reparametrizations $\tau \to f(\tau)$) in the IR
 - Symmetry is spontaneously & explicitly broken. Effective action for Goldstone:

$$I_{\text{eff.}}[f] \propto -\frac{N}{J} \int d\tau \, \text{Schw}(f(\tau), \tau)$$

Same action describes AdS₂ dilaton gravity

$$H = -\sum_{ijkl}^{N} j_{ijkl} \, \psi_i \psi_j \psi_k \psi_l$$

$$\overline{j_{ijkl}} = 0 \,, \quad \overline{j_{ijkl}^2} = J^2/N^3$$

[Sachdev/Ye '93] [Kitaev '15] [Maldacena/Stanford '16] ...

- Spread of perturbation through circuit: "growth" of an operator
- Make this more precise
- Toy model: Sachdev-Ye-Kitaev quantum mechanics
 - N Majorana fermions with random, Gaussian all-to-all couplings
 - Emergent conformal symmetry (time reparametrizations $\tau \to f(\tau)$) in the IR
 - Symmetry is spontaneously & explicitly broken. Effective action for Goldstone:

$$I_{\text{eff.}}[f] \propto -\frac{N}{J} \int d\tau \, \text{Schw}(f(\tau), \tau)$$

Same action describes AdS₂ dilaton gravity

$$H = -\sum_{ijkl}^{N} j_{ijkl} \, \psi_i \psi_j \psi_k \psi_l$$

$$\overline{j_{ijkl}} = 0 \,, \quad \overline{j_{ijkl}^2} = J^2/N^3$$

[Sachdev/Ye'93] [Kitaev'15] [Maldacena/Stanford'16] ...

- Spread of perturbation through circuit: "growth" of an operator
- Make this more precise
- Toy model: Sachdev-Ye-Kitaev quantum mechanics
 - N Majorana fermions with random, Gaussian all-to-all couplings
 - Emergent conformal symmetry (time reparametrizations $\tau \to f(\tau)$) in the IR
 - Symmetry is spontaneously & explicitly broken. Effective action for Goldstone:

$$I_{\text{eff.}}[f] \propto -\frac{N}{J} \int d\tau \, \text{Schw}(f(\tau), \tau)$$

Same action describes AdS₂ dilaton gravity

$$H = -\sum_{ijkl}^{N} j_{ijkl} \, \psi_i \psi_j \psi_k \psi_l$$

$$\overline{j_{ijkl}} = 0 \,, \quad \overline{j_{ijkl}^2} = J^2/N^3$$

[Sachdev/Ye '93] [Kitaev '15] [Maldacena/Stanford '16] ...

- Spread of perturbation through circuit: "growth" of an operator
- Make this more precise
- Toy model: Sachdev-Ye-Kitaev quantum mechanics
 - N Majorana fermions with random, Gaussian all-to-all couplings
 - Emergent conformal symmetry (time reparametrizations $\tau \to f(\tau)$) in the IR
 - Symmetry is spontaneously & explicitly broken. Effective action for Goldstone:

$$I_{\text{eff.}}[f] \propto -\frac{N}{J} \int d\tau \, \text{Schw}(f(\tau), \tau)$$

Same action describes AdS₂ dilaton gravity

$$H = -\sum_{ijkl}^{N} j_{ijkl} \, \psi_i \psi_j \psi_k \psi_l$$

$$\overline{j_{ijkl}} = 0 \,, \quad \overline{j_{ijkl}^2} = J^2/N^3$$

[Sachdev/Ye'93] [Kitaev'15] [Maldacena/Stanford'16] ...

Operator size in SYK

- Orthogonal operator basis: $\Gamma_{i_1\cdots i_k} = i^{\frac{k(k-1)}{2}} \psi_{i_1}\cdots \psi_{i_k}$ $(i_1 < \ldots < i_k, \{\psi_i, \psi_i\} = 2\delta_{ij})$
- Canonically purify the system: $\psi_i \to \psi_i^R, \psi_i^L$

"qubit" basis:
$$c_j = \frac{1}{2}(\psi_j^L + i\psi_j^R)$$
 $\{c_j, c_k\} = \{c_j^{\dagger}, c_k^{\dagger}\} = 0$, $\{c_j, c_k^{\dagger}\} = \delta_{jk}$

$$\{c_j, c_k\} = \{c_j^{\dagger}, c_k^{\dagger}\} = 0, \quad \{c_j, c_k^{\dagger}\} = \delta_{jk}$$

maximally entangled state: $c_i|0\rangle = 0 \quad \forall j$

"Size operator":
$$\hat{n}_{\infty} \equiv \sum_{j=1}^{N} c_{j}^{\dagger} c_{j}$$

 $\langle \mathcal{O} | \hat{n}_{\infty} | \mathcal{O} \rangle = \# \text{flavors contained in } \mathcal{O}$

Similar construction exists in more general models [Gu/Kitaev/Zhang'21]

- Generalize to thermal state:
- $\langle \mathcal{O} | \hat{n}_{\beta} | \mathcal{O} \rangle = \langle \text{TFD} | \mathcal{O}^{\dagger} \, \hat{n}_{\infty} \mathcal{O} | \text{TFD} \rangle$

(up to regularisation)

Explicit evaluation shows:

$$\frac{\langle \mathcal{O} | \hat{n}_{\beta} | \mathcal{O} \rangle}{\langle \mathcal{O}^{\dagger} \mathcal{O} \rangle_{\beta}} = n_{\text{max}} \left[1 - \frac{1}{N} \sum_{j=1}^{N} \frac{\langle \mathcal{O}(t_0) \psi_j \mathcal{O}(t_0) \psi_j \rangle_{\beta}}{\langle \mathcal{O}^{\dagger} \mathcal{O} \rangle_{\beta}} \right]$$

OTOCs received a lot of attention as measures of quantum chaos

[Larkin/Ovchinnikov '68] [Kitaev '14] [Shenker/Stanford '14] ... [FH/Rozali '18] ...

They exhibit exponential growth when $t_0 \sim \beta \log(N)$, then saturate

"out-of-time-order" correlation function

"Epidemic" operator growth in quantum circuit matches more detailed OTOC calculations in SYK, Schwarzian, CFTs, ...

Interior collisions and OTOCs

Apply this formalism to our collision setup:

$$|\Psi\rangle \equiv \psi_1^L(t_{wL})\psi_2^R(t_{wR})|\text{TFD}\rangle$$

 $\langle \Psi | \hat{n}_{\beta} | \Psi \rangle$:

Proposal: this 6-point OTOC computes the "size" of the double perturbation. It matches the fraction of healthy gates in the corresponding circuit.

 t_{wL}

 ψ_j

 t_{wR}

[FH/Zhao '21] [FH/Streicher/Zhao '21]

Summary & Outlook

Summary

- Entanglement & other information theoretic concepts: emergence of local spacetime dynamics in AdS/CFT
- Probe connection between interior geometry and L/R entanglement:

$$\text{strong collision } => \begin{cases} \text{ • disrupt L/R entanglement} \\ \text{• decorrelate } \langle \text{TFD} | \psi_j^L \psi_j^R | \text{TFD} \rangle \\ \text{• "remove" interior geometry} \end{cases}$$

 Quantum circuit model captures non-linear gravity effects, twosided correlation functions, operator growth

Questions

- Quantum circuit is coarse-grained representation of geometry (scale ℓ_{AdS}). Can we refine it?
 - Derive local Einstein equations?
- Spacetime volume is an unusual way to characterize a scattering process. Make connection with S-matrix?
- Two-sided setup was crucial (TFD, operator size, ...).
 How to deal with one-sided black holes, or pure states?
- How to define operator size in CFTs, QFTs, ...?