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1. TIME DELAY OF RADAR ECHOES

1 Time Delay of Radar Echoes

In 1964 Shapiro proposed a new test of GR consisting in a measurement of the
time delay of radar signals which are transmitted from Earth through a region
near the Sun to another planet or spacecraft and reflected back to Earth. Since
the radar signal is affected by the gravitational field of the Sun, it will return to
Earth with a certain time delay.

The radar signal is emitted from Earth and then sent back by a reflector as
sketched in Fig. 1. In calculations we set § = 7. The trajectory of the signal is
curved. This is not shown in the figure because the curvature is, of course, only a
tiny effect and the light ray seems almost straight. Let’s compute the time that
the signal needs to get from Earth to the reflector. To this end we use Eq. (23.15)
for the orbit in a static isotropic gravitational field with € = 0 (since m = 0):

dr\* 1> F?
A(5> +5-5 =0 (1.1)

If we divide this by {? and use 2° = ct, we find

dr  1drdz® (2312) Ldr F

MU - g 1.2
d\  cdt d\ cdt B (1.2)
This yields
AF? (dr\* 1  F?
- R 1.
2B <dt) T e (13)
For the minimal distance 7o (from the Sun) it holds
dr F2 B(To)
dt 12 rd (1.4)

Earth Reflector

Figure 1: Sketch of the situation as described in the text. The angles g and
wr and the distances g, rg describe the position of the Earth and the reflector
relative to the Sun. The whole setup is assumed to lie in the § = Z-plane.



1. TIME DELAY OF RADAR ECHOES

We insert this into Eq. (1.3) to obtain

A (dr\® 12 B(r)
5 (E) ey =0 (1.5)

This differential equation is solved by the following integral:

R T Y

where t(r,ry) is the time that the radar signal needs to travel from ry to . Note
that this is the time which would be shown by a clock at rest at infinity (as space
is asymptotically Minkowskian at infinity). This actually forces us to introduce a
correction since our clock rests at Earth, not at infinity. However, the correction
which is needed to compensate this effect is much smaller than the time delay
and can thus be neglected.

Using the Robertson expansion from Eq. (22.3),

A(r)zl—i—’yQ?a—i-..., B(ry=1——+ .., (1.7)

we get

Ao (-0

Inserting Eqgs. (1.7), (1.8) into (1.6) and expanding, we get

t(r, mo) ~ 1 [——q ( 7;(;0)“1”))
m m 1+7—10g< m) (1.9)

2_ 2
The first term 7;2 0 corresponds to the travelling time assuming a straight

trajectory in Euclidean space as can easily be seen from the figure and Pythagoras’
theorem. The other terms account for the general relativistic time delay due to
the gravitational field of the Sun. For the situation drawn in the figure, the total
delay is

(St =2 [t(TE,To) +t(7’R,T0

) VAT ] Caw
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1. TIME DELAY OF RADAR ECHOES

where the factor of 2 accounts for the fact that the signal travels from Earth to
the reflector and back again.

Significant delays occur if the radar signal passes nearby the Sun, i.e. if g
is of the order of some Sun radii. In this case we have rg,rg > Ry and also
rE, TR > r9. We thus can perform the following approximations in Eq. (1.10):!

4 1 4
5t ~ -2 [1 + (%) log TETR] . (1.11)

2
c L)

We see that ot is maximal if the signal just grazes the surface of the Sun, i.e.
710 — R@

In order to see the orders of magnitude, we use rg ~ g ~ 10% km, R, ~ 7-10°
km. This yields 2?‘1 = % ~ 107° s and thus

4a 1+ 4rird
Stmax = — |1 1
e (5
~2-107"s. (1.12)

Performing the measurements has been a very difficult task since the precise
distances rg and rgr were not known with sufficient precision. Nevertheless, in
the seventies these measurements were performed using Venus and Mercury and
afterwards also using spacecrafts as reflectors (e.g. the Vikings which landed on
Mars or, more recently, the Cassini spacecraft). The results are?

Vikings: v = 1.000 £ 0.001,
Cassini: v =1+ (2.1£2.3)-107°. (1.13)

Another experimental verification of the Shapiro delay is the measurement
of the PSR J1614-2230 system. It consists of a pulsar which emitts signals in
very regular time intervals, and a white dwarf that orbits the pulsar. When the
white dwarf is in front of the pulsar and the light of the pulsar arrives at Earth
only by passing the white dwarf, then the signal arrives with a certain delay.
Measuring the Shapiro delay®, one can infer the mass of the white dwarf to be
0.500 + 0.006 M. With an orbital period of 8.7 days, this yields a neutron star
mass of 1.97+0.04M. This reslt is important for the modelling of neutron stars
since the largest neutron stars (so far) had masses of about 1.4M.

1. I. Shapiro, Phys. Rev. Lett. 13, 789 (1964)
2B. Bertotti et al., Nature 425, 374 (2003)
3P. Demorest et al., Nature 467, 1081 (2010)
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2. GEODETIC PRECESSION

2 Geodetic Precession

Consider a particle with a “classical” angular momentum (for instance the in-
trinsic angular momentum of a rigid body like a gyroscope). In the local inertial
system in which the body is at rest, the spin (i.e. angular momentum) is given by
S = S'e;. To the three-vector S* we assign a Lorentz vector S®. Consider now a
locally inertial coordinate frame IS’ which is momentarily at rest with respect to
the rigid body (or particle):

S = (0,8"). (2.1)

We can transform this to some arbitrary inertial system IS by means of a Lorentz
transformation. In the rest frame IS’, the velocity of the body is

' = (c,0). (2.2)
Therefore we have in IS’
ul 5™ = 0. (2.3)

Since this quantity is a Lorentz scalar, we have u,S“ = 0 in any arbitrary IS.
Consider first the case without any forces acting on the particle and no torque
acting on its spin. In an arbitrary IS we have

dS*®
=0. 2.4
dr (2:4)
We define the Riemann vector
oz
SH=_—8° 2.5
- (25)

which describes the transition from the coordinate system IS with coordinates
(%) to a general system (z*). According to the covariance principle, the gener-
alization of Eq. (2.4) reads

DS* ds*

— — = —TH S 2.
ar 0 = ar AU S ( 6)

This equation describes the spin precession in a gravitational field. The con-
dition u,S* = 0 reads u,S5* = 0 in the general coordinate system. Note that
S,,S* =const., which implies that (2.6) describes the rotation or precession of
the spin vector. Since we assumed no external forces, Eq. (2.6) contains only
gravitational effects. We conclude that Eq. (2.6) describes the precession of the
spin of a particle which is freely falling in a gravitational field as, for example,
the precession of a rotating satellite (or gyroscope).



2.1 GEODETIC PRECESSION

If there are other external forces f* besides gravity, then one finds instead of
Eq. (2.6)
DS” 1 Du*

& @ o (27)

which is also called Fermi transport. It describes the spin precession of an ac-

celerated particle on which a gravitational field acts (c.f. Eq. (19.2), 2% = %)

The special case f* = 0 is just parallel transport.

Based on the above considerations, we shall study the following effects (in the
gravitational field of the Earth):

1. Geodetic precession: the precession of a freely falling gyroscope. In
order to simplify the analysis we will assume the gravitational field to be
isotropic and static.

2. Lense-Thirring effect: the precession of a gyroscope in the gravitational
field of the Earth which is due to the rotation of the Earth.

2.1 Geodetic Precession

Gyroscopes are rigid bodies which can also perform rotations described by S*
besides the movement of its center of mass. To compute the geodetic precession
of a gyroscope we use Eq. (2.6). In the local rest frame of the satellite (orbiting
the Earth) we have for the spin vector:

S = (0,1) (2.8)

where 1 describes the angular momentum of the gyroscope. We use the stan-
dard form of the static and isotropic metric in spherical coordinates (cf. chapter
(22.1)):

zt = (ct,r, 0, )
g = diag(B(r), —A(r), —r?, —r?sin#).

Assume that the satellite is on a circular orbit, i.e.

r = const., 0=_—, © = WoT. (2.9)

o

Therefore the velocity of the satellite reads

B dz*

ut' = i (uo = const., 0, 0, u® = wy = const.) . (2.10)
T



2.1 GEODETIC PRECESSION

If we insert ¢ = 7 into the Christoffel symbols from Eq. (22.6), we obtain for the
non-zero components

B’ A’ r r
Iy = oA Iy = A’ [y = R | 2
B’ 1 1
FOOl = 1—1010 = ﬁ’ F212 = F221 = ;, F313 = F331 = ; (2.11)
Eq. (2.6) reads then
dS°
- = Tlo’s (2.12)
dS?
W _ _FIOOUOSO - F133u353 (213)
dS?
— =0 2.14
dr ( )
ds?
o —IPyu’Sh, (2.15)
We can immediately solve the third of these equations:
S?(7) = const. (2.16)

that is the component of the spin (or angular momentum) of the gyroscope which
is perpendicular to the satellite’s orbit (f-direction) is constant.

Because of r =const. all coefficients of the system of linear differential equa-
tions (2.12)-(2.15) are constants. We differentiate Eq. (2.13) with respect to 7
and insert (2.12) and (2.15) on the right-hand side. This yields

d?St
dr?

— [FIOOFOOI(UO)Q _1_111331-\331(“3)2} Sl
= —w?Sh (2.17)

With (u?)? = w? and inserting the Christoffel symbols from (2.11), we get

B/2 UO 2+ 1
4AB \ u3 A

In order to understand the ratio Z—g better, we look at the equation for the

trajectory of the satellite (geodetic equation):

w” = wy (2.18)

dut
di — —F'“V)\UVU)\. (219)
m
The 1 = 1 component of this equation is (u! = 0)
du?
0= O —Thoo(u’)? — Tya(u’)? (2.20)
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from which we infer

wWO\? 2r

W= wo\/% (1 - ;g). (2.22)

Using the Schwarzschild solution (B = A~! =1 — 22) this yields

T

w:wm/l—i—a (2.23)

or in terms of the Robertson expansion

w:wm/l—(l—i-Q’y)g. (2.24)

Since r =const., Eq. (2.17) is of type

St wist =0 (2.25)

which describes a harmonic oscillator. With initial conditions S1(0) = S and
S1(0) = 0 the solution reads

SY(1) = S cos(wT), S? = const.. (2.26)

Inserting this into Eq. (2.15), we obtain by integration

Swo
S3(7) = ——si : 2.27
(1) o~ sin(wr) (2.27)
We proceed by studying the time dependence of the projection (S*,S3) (or
(7, p)-components) of the spin vector onto the orbital plane (6 = 7), c.f. Fig. 2.
Consider the constant vector e, along the orbit of the satellite:

e, = cos(woT )e, —sin(woT )e,,. (2.28)
=p =p

The orbital period of the satellite is 75 = Z—’; After each orbit, the argument ¢ in
(2.28) increases by Towo = 27 whereas the argument in (2.26) or (2.27) increases
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wT

v
S

Figure 2: Projection of the motion orbit of precession of the angular momen-
tum vector onto the orbital plane of the satellite. The precession takes place in
the (r,p)-plane since the #-component of the spin vector (i.e. the component
perpendicular to the orbital plane) is constant.

by 1ow which differs slightly from 27. The phase difference after one orbit is given
by

Aa = 15(wy — w)

142
— 97 — 91 1_M
T
1+2
_ d+29)a (2.29)
T

Consider the vector S which is the projection of S* onto the orbital plane:

S =S.e + S,€e,. (2.30)
The components of this vector are given by
(S,)? = —g11.9*S? and (S,)? = —gs35°5° (2.31)
with
—g11 = A(r) and — g33 = 7 sin’ 0|9:% =7’ (2.32)

Therefore S, o cos(wr) and S, « sin(wr). For 7 = 0, S is thus parallel to
e,. However, after an orbit, wr differs slightly from 27 as we have calculated in
Eq. (2.29). The geodetic precession after one orbit is given by

~ 3ma (1+27)
o 3 '

Ao

(2.33)
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Consider the concrete example of a satellite in a circular orbit around the

Earth. We have

R\ /2
—— =g and To = 27 (—) . (2.34)
g

After one year (i.e. after % orbits with ¢t = 1 year), we find (assuming r ~ Rg)

o —

~ 8" 4 yr !, (2.35)

For a general radius r, one finds Aa(t) ~ 8”4 (Rg/r)*? yr—'.

On April 20, 2004 the satellite Gravity Probe B has been launched to measure
the geodetic precession. At an altitude of 642 km, general relativity predicts a
geodetic precession of 6606 mas yr~*. The measured result was 6673 mas yr—! (1
mas = 1 milliarcsecond). This result therefore matches the predictions reasonably
well. 4

2.1.1 De Sitter Precession of the Moon

The Earth-Moon system can be considered as a “gyroscope” with an axis “per-
pendicular” to the orbital plane in an orbit around the Sun. We denote by [ the
angular momentum of the Earth-Moon system with respect to the common cen-
ter of mass (I is essentially the orbital angular momentum of the Moon because
the common center of mass almost coincides with the center of the Earth).

The angular momentum I can be decomposed in a component l; perpendic-
ular to the Earth’s orbital plane around the Sun and a parallel component [}
The parallel component does not vanish because the orbital plane of the Moon
around the Earth is tilted by 5 with respect to the orbital plane of the Earth
around the Sun. In terms of the previously defined quantities, I, corresponds
to S? and stays constant. The component l) corresponds to S and lies in the
orbital plane of the Earth around the Sun. It is this parallel component which is
affected by geodetic precession. Therefore the orbital plane of the Moon rotates
slightly (this was first noticed by De Sitter in 1916).

We can calculate this precession per century:

3mag

Aape sitter = 100 ~ 2" per century (2.36)

T'Earth-Sun

Additionally we have a Newtonian precession (as in any three body system)
with a period of 18.6 yr. This Newtonian effect is 107 times larger than the De
Sitter precession. Nevertheless the De Sitter precession has been measured. A

4 C. Everitt et al., Classical and Quantum Gravity 25, (2008) 114002

10



2.1 GEODETIC PRECESSION

laser beam has been sent to the the Moon where it was reflected back to Earth
by mirrors previously brought to the Moon by the Apollo mission (1969 and
following years). The measurements that have been performed from 1970 till
1986 confirmed the De Sitter precession with a precision of about 1%.°

SShapiro et al., Phys. Rev. Lett. 61, 2643 (1988) and Miiller et al., Astrophys. J. 382,
L101 (1991)
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3. LINEARIZED FIELD EQUATIONS

3 Linearized Field Equations

In order to find solutions to the Einstein field equations in the weak field regime,
one can linearize the equations. The results of this section will, for example, be
used to calculate the Lense-Thirring effect and to describe gravitational waves.
Since the field equations are non-linear, there is no standard procedure to solve
the equations given a source for the fields 7),, (for example, in electrodynamics
we didn’t have to struggle with such difficulties). Besides numerical methods,
there are essentially three possibilities as for which type of solutions one can find:

e Exact solutions assuming simplifying conditions (as, for example, static-
ity, isotropy, ...). An example for this case is the Schwarzschild solution.

e Solutions of the linearized field equations for weak gravitational fields.

e Systematic expansion of the field equations and the equations of motion
for weak fields and small velocities. This method is also called post-
Newtonian approximation. For example, in planetary systems we have

Z—; ~ % which is very small. Such results should reproduce the Newtonian

limit in lowest order (linearized in ¢).

We shall now elaborate the second possibility.

3.1 The Energy Momentum Tensor of the Gravitational
Field

The field itself is a form of energy and thus also a source of the field. This effect
is purely due to the non-linearities, of course. Considering a weak field, we can
work with small deviations from the Minkowski metric:

Guw = N + By With |hy, | < 1. (3.1)

One proceeds as follows. First, G, has to be expanded in powers of h,,,. The first
order terms will lead to a linear wave equation. Neglecting terms of third order,
the second order equations give the energy-momentum tensor of the gravitational
field.

The expansion of the Ricci tensor can be written as
R, = R(}) + R + ... (3.2)

with R,(P) = 0. In order to compute the first order term of (3.2), we write down
the expansion of the curvature tensor:

1

Rpum/ = 5 (gpo,,u,l/ + Guvpo — Guowp — ng,U,u) + O(hz) (3~3>

12



3.1 THE ENERGY MOMENTUM TENSOR OF THE GRAV. FIELD

where the derivatives are non-covariant (the additional terms due to covariant
derivatives are of higher order). We can thus write the first order of the Ricci
tensor in terms of h,:

1
Rl(tlv) - § (Dhuv + hpp,u,v - hpu,p,v - hpv,p,u) : (3-4)

The d’Alembert operator can be used instead of 9,0" because in the approxima-
tion (3.1) the coordinates are “almost” Minkowskian, so 9,0* = O+ O(h). The
first order Ricci scalar is given by

RM = ¥R (3.5)

We proceed by considering the second order equations. The left-hand side of
the field equations can be written in terms of the quantity ¢,, which is defined
by the equation

Rg @ 8t
2 v .
R() — (—2" ) =t (3.6)

We take these terms to the right-hand side of Einstein’s equations and find at
second order in h,:

RO 8rG
R(l) _ _T]/»LV — —7<T#y + t/_Llj)- (37>

This can be interpreted as a linear wave equation in h,, with the source terms
Ty = Luv + t,uz/- (38)
We have to think of 7,,, as being the energy-momentum tensor which also includes

the contribution of the gravitational field itself.
We interpret (3.7) as follows: since G, = 0 (Bianchi identity), we find for

the left-hand side of (3.7):
0 RM
o (RE}) — T”’”) = 0. (3.9)

Therefore the right-hand side satisfies

0T,

pr— . .1
o =0 (3.10)

This gives the momentum

P, = /d37" Tu0 = const. (3.11)

13



3.2 LINEARIZED FIELD EQUATIONS

which is conserved (in time). We can thus interpret 7,9 as the momentum den-
sity and 7, as an energy-momentum tensor (indeed we know that 7, = 0 but
so far we did not necessarily conclude 7, = 0). Since 7},, includes all non-
gravitational sources and 7, is interpreted as the “complete” energy-momentum
tensor, ¢, clearly describes energy-momentum which is purely due to the gravi-
tational field:

. A Ry, (2)
o= (REEJ—( ) (hal<1). (312

3.2 Linearized Field Equations

With Eq. (3.3) we find for the field equations at first order in h

ct 2

167G T
Ohp + 1o — 0 ppy — Py pyy = ——— (TW — —77“,,) ) (3.13)

We use 7, instead of g, in this equation because both sides are already of order
h. Since the field equations are covariant, we are free to perform a coordinate
transformation. But note that due to |h,,| < 1 we can only perform coordinate
transformations which deviate only slightly from Minkowski coordinates:

ot — 't = ot + et (x) with ¢ < 1. (3.14)

/ v . . /
From ¢'* = %%g)‘p we find the transformation of h,,. With ‘98"; T =05 + g%;

inserted into g™ we get

gl,uz/ — 77,u,I/ o h/ul/

et , 0¥
= (4 5m) (3 ) =1 (819

where we used that from g¢,, = 7, + hy, it follows g = n*” — h*. From
Eq. (3.15) we infer
oet  0e”

h/;w — h/ﬂ/ _ -

ox, ox,

(3.16)

Since this is already a first order equation (in h), we can raise and lower indices
with ¢, ~ 1, and g" ~ n*”. Thus

e, Oey
oxrv Ozt
In analogy to electrodynamics this transformation of the “potentials” g, is called

gauge transformation. We can choose four functions e*(x) which gives four
constraints on the “potentials” h,,. For instance,

By = Py —

(3.17)

20, = W, (3.18)

14



3.2 LINEARIZED FIELD EQUATIONS

We insert the gauge condition (3.18) into (3.13) and obtain the decoupled lin-
earized field equations:

167G

T
Ohysy = —— (TW - 5%) : (3.19)

This can easily be seen if we differentiate (3.18) (i.e. h*,, = 2h”, ,) with respect
to x¥:

hppvuvy = 2hpu7p,l/ = hpllz,/LV + th7p7p, (320)

we used h v = hV . This implies
W o
—hpmpy — hpmp# + hpp7u7y =0 (321)

which is just another form of our gauge condition from which it can be seen that
(3.13) indeed reduces to (3.19).

Furthermore, it can be shown that from (3.17) it follows that if h,, does not
satisfy (3.18), then we can find a transformed A/, that does so. This can be done
using the coordinate transformation (3.14) with O, = h*,,, — %h“u,u‘

The linearized field equation Eq. (3.19) has the same structure as the field
equations in electrodynamics. We can therefore immediately write down the
well-known solution for the retarded potentials:

S (st~ )

ct |r — 7|

(3.22)

with S =T — 577“,,.

The interpretation is the same as in electrodynamics: a change in .S, at place r
does not affect the place ' before some time @ has passed.

15



4. LENSE-THIRRING EFFECT

4 Lense-Thirring Effect

The Lense-Thirring effect is the precession of a gyroscope in the gravitational field
of the Earth due to the fact that the Earth is rotating. To set up an analogy with
electrodynamics, we note that the gravitational field of the Schwarzschild metric
corresponds to the Coulomb field outside of a static, spherical charge distribution.
If a charge distribution rotates with constant angular velocity, this results in the
presence of a static, non-isotropic magnetic field. Similarly, the rotation of the
Earth will cause a “gravitomagnetic” field.

We will treat this problem by using the linearized field equations. Another
approach would be to start from the exact Kerr solution (i.e. the metric outside
of a rotating black hole) and apply the weak field limit.

4.1 Metric of the Rotating Earth

We assume a weak field caused by a slowly rotating planet, so |h,,| < 1. The
linearized field equations read

167G T
DhMV = — 04 (TMV — ET/MV> . (4].)

The coordinates z# = (z°, ..., 2®) are Minkowski coordinates up to corrections of
O(h). In the energy-momentum tensor (19.9) we can neglect the pressure since
p < pc?. Since the velocities (rotation of the Earth) are small compared to ¢, we

neglect terms of order (%)2 The energy-momentum tensor thus reads

T, =~ pc? (i g) . (4.2)

The terms proportional to v; generate the gravitomagnetic field. This has to be
compared to electrodynamics where magnetic fields are generated by currents.
The mass distribution of the Earth can be approximated as follows:

_Jpo (r < Rg)
p(r) = {0 (r > Re) (4.3)

The angular velocity of the Earth is
2m

= ith w = . 4.4
w=we; withw= - day (4.4)

We consider the Earth as a rigid body, so we can write the velocity field as
v(r)=wAr  orv = ewrt (4.5)

16



4.1 METRIC OF THE ROTATING EARTH

Because this velocity is constant, T, does not depend on time and therefore the
field equations (4.1) have stationary solutions. We can thus replace O by —A
and Eq. (4.1) becomes

8mg

Ahyy = FP(T)» (4.6)
1 .

Ahgy; = iifp(r)eijkwjrk (4.7)

where we used 7, = diag(1,—1,—1,—1), % = pzﬁ and Tyo = pc?, Ty; = 0.
Using

L O ), (4.8)

r—r]

we can immediately solve the equations (4.6) and (4.7) inside the planet:

26 o(r)

hyuu(r) = T2 d*r’ r— ] (4.9)
4G r)a™

hoi(r) = _ngknwk/dgr/ —‘pT(, _) | (4.10)

where 2’ denotes the n-th component of r'.
For the region outside of the mass distribution (r > Rg), we can use the
expansion

n

1 47 T
g —_Y* ) Ym - > /
| —'| Z(21+1)7~l+1 im(7)Yim (7) (r>r)

l,m

1 a:jx;-

where Y}, are the spherical harmonics and 7, ' denote unit vectors in directions
of r and 7/, respectively. Note that for the Cartesian components we have x; =
gixt® = —x* + O(h). The corrections of O(h) can thus be neglected because the
right-hand sides of (4.9) and (4.10) are already of first order in h. Since p(r) is
spherically symmetric, only the first term of (4.11) contributes in Eq. (4.9):

2G 2G Mg

Byu(r) = % &r' p(r') = 2 (r > Rg) (4.12)

Since px™ is proportional to Yi,,, only terms with [ = 1 contribute to (4.10):
4G Wiz "
hOi(T') = ggijnT /dS’f” p(r’)x’ x;
B _4GMER% wlz"

B B3 Cum

(r > Rg). (4.13)

r3
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4.1 METRIC OF THE ROTATING EARTH

Since p(r) is spherically symmetric, we integrate using '"z), = —5,’;£. Consid-
ering ho; as a vector, i.e. ho; — h = hg;€', we can write (4.7) as
167G
Ah(r) = 5w AT (4.14)

and (4.13) becomes

4G Mg R? 2GI
h(r) = — G EREw/\r:_ G w/>r

5¢3 r3 A

(4.15)

where [ = %MER% is the moment of inertia of a homogeneous sphere.

We want to consider the analogy with electrodynamics again. In magneto-
statics, the vector potential A of a homogeneously charged rotating sphere with
radius R and total charge ¢ satisfies

4
AA = —lpew AT (4.16)
C
qR?w AT

which has the same form as Eq. (4.15).
Egs. (4.12) and (4.13) determine the metric of the rotating Earth (valid for
r > Rg):

c2r cr

2G M 2G M -
ds? = (1 — #) Adt? — (1 + ¢ E) dr® + 2chy; da'dt (4.18)

where dr? = —dz'dzr;. Note that this metric at O (GCZQ\{E) and for w = 0 does
not reduce to the Schwarzschild metric since Eq. (4.1) implies that we chose
other coordinates as compared to the standard form. However, the metric (4.18)
asymptotically (r — o0o) becomes the Minkowski metric. One can perform a co-
ordinate transformation such that dr? has the usual angular dependence, i.e.
dr? — r%*(df* + sin®0dp?). Distant “fixed” stars (which live in the asymp-
totic Minkowski spacetime) have constant values for the angles (0, ¢). Therefore
changes in the angles due to spin precession refer to rotations with respect to the

distant fixed stars.

4.1.1 Rotation of the Local IS

The metric (4.18) implies a rotation of the local insertial system IS. In order to
see this, consider the axis of a gyroscope which is described by

as#

— = —I"*,,S"u". 4.1
dr Stu (4.19)
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4.1 METRIC OF THE ROTATING EARTH

We solve the equations for a gyroscope at rest with
St =(0,5,  u'=(c,0). (4.20)

Note that this gyroscope is freely falling, without external forces acting on it
besides gravity. The forces act only on the center of mass. _
Because we are taking into account only terms up to O(h), we can replace %

i dr
by 9. From Eqgs. (4.19) and (4.20) it follows that
dS" PR
dr = —cI’ OjSJ. (421)
For time independent h,, we find at first order
ik
i . n @h()k (‘)hoj . 1 i i
Coj = 5 (8xj 5 ) T3 (95h0" — O'hay) - (4.22)
Inserting this into (4.21) and lowering the index i, we find
dSz C .
dt - —5 (ajhgi - &hoj) SJ
c
= —§€ik1 (5kmnamh0n) S'
= ;1 2F S (4.23)
with ;™" = 0" — 670 and the gravitomagnetic field
OF = —ggkmnﬁmh(m or Qr)= —gV A h(r) (4.24)

The indices 7, j, m run over 1,2,3. We call h the gravitomagnetic potential.
Using h from Eq. (4.15) we obtain the following expression for the angular velocity
in the local IS:

_ 2GMRE3(w - r)r — wr?

(r) 5¢2 7D

(4.25)

Note that €2 has the same form as B = V A A in electrodynamics. In vector
form, Eq. (4.23) reads

d
d—fzﬂ/\S or dS=(Qdt)AS| (4.26)

This implies a precession of the spin of the gyroscope’s axis with angular velocity
2. This precession is due to the rotation of the Earth with angular velocity w.
The precession of the gyroscope’s axis is equivalent to the rotation of the local
IS because in the local IS we have S =const.. Therefore the local IS rotates with
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4.1 METRIC OF THE ROTATING EARTH

angular velocity €2 as compared to the global coordinate system described by
(4.18). For r — oo Eq. (4.18) becomes Minkowskian, i.e. it describes a system
which doesn’t rotate with respect to the fixed star system.

To summarize, the physical meaning of the angular velocity €2 is that the
local IS rotates with 2 with respect to the fixed star system. The rotation of the
Earth drags the local IS (“frame dragging”).

Now that we derived geodetic precession and the Lense-Thirring effect, we
note that in fact both effects take place at the same time and thus sum up.
Inserting r = Rg in Eq. (4.25) we get at the north pole and at the equator,
respectively:

2G' M, 2 North pole, § =0
_ . Ew . ( or pole, _ ) (427)
5¢* Ry (=1) (equator, § = %)
where we used |w - 7| = wr cos . Numerically, one finds
2G Mg 9
~ 107 w. 4.28
5C2RE “ “ ( )

We conclude that the Lense-Thirring precession affects a Foucault pendulum
located at the north pole. The rotation with respect to the distant stars amounts
to

4G Mg,
Ap=Qpr - lyr = SR

27 - 365 = 0.2” per year. (4.29)
C" g

This effect was first computed by Lense and Thirring in 1918.9

The NASA satellite Gravity Probe B aims to measure both geodetic precession
and Lense-Thirring precession. It was launched in 2004 and orbits the Earth on a
polar orbit. If one chooses the spin perpendicular to the orbital plane, the Lense-
Thirring effect vanishes for equatorial orbits since in this case we have S||w||2
and Eq. (4.26) gives 22 = 0. The expected total frame dragging is 0”.05 per year
and it is yet unclear whether the instrumental precession suffices to detect the
effect. However there are claims that the effect has been measured on the orbit
of the LAGEOS satellites.”

Update: in May 2011 the final results of Gravity Probe B have been released
and they indeed confirm the GR predictions to a very high accuracy.®

SLense and Thirring, Phys. Zeitschr. 19, 156 (1918)
L. Ciufuloni and Pavli, Nature 431, (2004) 958
8C. W. F. Everitt et al., Phys. Rev. Lett. 106, 221101 (2011)
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4.2 GRAVITOMAGNETIC FORCES

4.2 Gravitomagnetic Forces

In the discussion of the Lense-Thirring precession, we saw a formal equivalence
to electromagnetism:

h < A
Q «— B.

This analogy persists even for the equation of motion of a particle in the metric
(4.18),

E = —FM,YVU’YUV. (430)
Neglecting terms of O (Z—j) we have dr ~ dt and u* = (c,v"). Therefore Eq. (4.30)
reads

dv’
dt

2
= —Fi0062 — QCFioj’Uj + @ (U—) . (431)

c2

The first term on the right-hand side corresponds to the gradient of the Newtonian
potential. In analogy to to (4.21)-(4.23), the second term can be shown to give

—T07 = (A D). (4.32)
This implies that Eq. (4.31) can be written as

d
d—"; — —grade + 2Q A . (4.33)
This is the equation of motion in the presence of gravitomagnetic forces and it

has the same structure as the equation for the Lorentz force
1
K:q(E+—vAB). (4.34)
c

This analogy is the origin of the notion of gravitomagnetism.

Note, however, that this analogy is only true if we consider the linearized
field equations of general relativity. In the above identification the electromag-
netic fields are full solutions to Maxwell’s equations whereas the gravitomagnetic
potential and field are approximations. Furthermore, the analogy is quite formal
and certainly not complete due to the absence of negative “gravitational charges”.
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5. GRAVITATIONAL WAVES

5 Gravitational Waves

For weak gravitational fields (i.e. [hu| = g — Mw| < 1) the Einstein field

equations read
167G T
Dhlﬂf = — C4 <szx — 577#1/> . (51)

In the vacuum (7},, = 0) the equation reduces to
Oh,, =0 (5.2)

which has plane waves as its simplest solution. The above equation is quite similar
to the wave equation in electromagnetism, [JA* = 0 with the electromagnetic
vector potential A*. As we will see, the solutions are similar, as well. Note that
the wave equation in electromagnetism is exact whereas the general relativistic
wave equation arises from the approximate linearized field equations.

5.1 Electromagnetic Waves
Physical fields are invariant under gauge transformations

AF — A" = AF 4+ DMy (5.3)
so that we can choose 0,A* = 0 (Lorenz gauge) and get

4
A" = %j“. (5.4)

Due to the gauge condition, only three out of four components of A* are inde-
pendent. In vacuum we have that j# = 0 which allows us to perform another
gauge transformation satisfying [y = 0. We use this condition to set A° = 0.
Finally we are left with two degrees of freedom (polarizations). The conditions
read then

OA* =0, A% =0, 9A" = 0. (5.5)
This is solved by the ansatz
AF = et exp|—ik,z"] + c.c. (5.6)

where k,k* = 0 and e;k" = 0 (polarizations are transverse to propagation direc-
tion.
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5.2 THE GRAVITY CASE

5.2 The Gravity Case

Due to the symmetry h,, = h,,, 10 out of 16 components of h,, are independent.
With a gauge transformation of the form (3.18) we can impose four additional
conditions. This leaves us with 6 degrees of freedom that are really independent.
If we consider the vacuum case

Ohyw = 0, (5.7)
in addition to (3.17) we can perform a further transformation of the form
hyw — h;w = hy — Oy, — Duey, (5.8)
provided that ¢, satisfies
e, = 0. (5.9)

Such a transformation leaves Eq. (5.7) and the gauge condition (3.18) invariant
(this is in complete analogy to electromagnetism, of course). With these four
additional conditions we are left with two independent components of h,,. The
solution to (5.7) can be written in terms of plane waves

by = e, expl—ik,x"] + c.c. (5.10)
where
w2
Mk, =Kk =0 & k===kK=F (5.11)
C

The amplitude of the wave e, is called polarization tensor. Inserting (5.10)
into the gauge condition (3.18) (2h*,, = h*,,) leads to

2k, e,, = k,n'e,,. (5.12)

Clearly e, inherits the symmetry of h,,, thus e,, = e,,. Let us assume a wave
travelling along the x3-axis. This yields the wave solution

Py = € exp [ik(z® — ct)] (5.13)
where we used Eq. (5.11). The components of the wave vector are then
b=k =0, ko= —hy=k=". (5.14)
c

In this case the gauge condition (5.12) reads
1

eoo + €30 = 5(600 — €11 — €z — €33), (5.15)

eor +e31 =0, (5.16)

ez + €32 =0, (5.17)
1

€03 + €33 = —5(600 —e11 — egy — €33). (5.18)
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5.2 THE GRAVITY CASE

With e, = e,,, and these four conditions the polarization tensor can be described
by six components. All the other components can be expressed in terms of the
six independent components

€00, €11, €33, €12, €13 and eg. (5.19)

The other components are givevn by

1
€o1 = —€31 = —€13, €2 = —€32, €9 = —€11, €p3 = 5(600 +es3).  (5.20)

We can perform yet another transformation (3.14) (2'# = x* + e*) with functions
et satisfying [e* = 0. The functions are solutions of the wave equation, therefore
we can write them as

et(x) = 0" exp [—ik,2z"] + c.c.. (5.21)

As noted before, such a transformation with arbitrary 0* is not violating the
gauge condition (3.18). We choose k* in (5.21) equal to the wave vector of a
given gravitational wave. Using (5.21) in (3.16) we obtain a new solution %, in
which all the terms have the same exponential dependence given by exp[—ik,z"].
Thus only the amplitudes transform as

ey = e,

€1y = €1,

6/13 = €13 — idlk,
6,23 — €93 — 1'52]{?,
egg — €33 — 2263k,
660 = eqo + 22]{350

We can choose 6, such that ey, = €3 = e5; = eh3 = 0. This new solution is
equivalent to the old one. From the physical point of view, only polarizations
corresponding to €}, and €}, are relevant.

Neglecting primes in our notation from now on, we get for the gravitational
wave propagating in x3-direction after gauging away all redundancies

0 O 0 O
10 e e O (3
Ry, = 0 ey —en 0] P [ik(2® — ct)] + c.c. (5.28)
0 O 0 O

5.2.1 Helicity

The direction of k is the z3-axis. We ask now the question how (5.28) transforms
under a rotation around this axis. Since we are in an almost Minkowskian metric
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5.3 PARTICLES IN THE FIELD OF A WAVE

we can realize this transformation as a Lorentz transformation described by the
matrix

1 0 0 0
= 0 cosp sinp 0
B
A%y 0 —sing cosp 0 (5.29)
0 0 0 1
Therefore the polarization tensor transforms as
€, = N A7 e, (5.30)
This yields
el = e11cos(2p) + e128in(2¢), (5.31)
ey = —eq1 8in(2¢p) + €12 cos(2¢). (5.32)
If we consider e = ey £ ie15 instead, we thus have
ey = e ey (5.33)

The vectors e4 have helicity +2, whereas the wave solutions in electrodynamics
have polarization +1. This just means that gravitons have spin 2 whereas photons
are spin 1 bosons.

5.3 Particles in the Field of a Wave

Similarly to electromagnetic waves also gravitational waves exert forces on mas-
sive particles. We want to explore how the positions of particles are affacted in
the field of a gravitational wave. For this analyis consider a plane wave described

by

0 0 0 0
o (2,t) = 8 2; _621 8 exp (tk(z® — ct)) + c.c (5.34)
0 0 0 0
The corresponding metric has the form
ds® = (N + by (2°,1)) da*da”. (5.35)

The trajectory z7(7) of a particle in the gravitational field satisfies the equation
of motion

& dat da
SR (5.36)

- U

25



5.3 PARTICLES IN THE FIELD OF A WAVE

where I'?,,, can be taken from Eq. (5.28). We assume that there are no other
forces but gravity which act on the particles. Inserting (5.34) into

1, (Ohyy  Ohuy  Ohy,
7, = =1 ( Ay A b ) (5.37)

2 oz ox” oz
it follows
; 1 ahol ahOz (9h00
Ty = —= - — | . 5.38
0 2 (89&0 i 0x°  Oxt (5.38)
As initial conditions we choose
- dz’
' (0) = = 0. 5.39
#0) =G (539
This implies
d*x! i oy
ar |, = —wa“(O)x (0) =0. (5.40)

Therefore the acceleration vanishes. This means that the velocities of the particles
don’t change. The solution of the equations of motion (5.36) thus reads

{2
(flf' =0 = 2'(7) = const. (5.41)
In the chosen coordinates the particles in the field of the gravitational wave
can thus be described by constant spatial coordinates. However, this does not
mean that the particles are at rest. In fact their distances vary due to the time
dependence of the metric tensor g,, as in Eq. (5.35).

Consider now particles which are arranged on a circle in the z'-z2-plane. The
particles are initially at rest on a circle ((z')?+ (22)? = R?). We want to examine
the effect of an incident gravitational wave along the z3-axis. To do so, we write

(5.35) in the form

ds* = Adt* — dI* — (dz®)?
with dI* = (8n — B (t)) d2™dz™  (m,n = 1,2). (5.42)

In the z!-2%-plane we have

P (t) = hunn (2 = 0, 1) = <€11 12 ) exp(—iwt) + c.c. (5.43)

€12 —é€11

where w? = ?k%. With (5.42) we can compute the physical distance p of a

particle p from the center of the circle. According to Eq. (5.41) the coordinates
1

z, and x?) of the particle are constant. We insert in (5.42) the finite values of the

26



5.4 ENERGY AND MOMENTUM OF A GRAVITATIONAL WAVE

coordinates ;" of p instead of dz™ (this is allowed because the metric coefficients
do not depend on ! and z?):

P = (6mn — hann(8)) 2 (m,n = 1,2) (5.44)
with z, = Rcosg, a7 = Rsine. 45)
Using Eqs. (5.43)-(5.45) we find the solution
2R 1—-2h C‘OS(QQO) cos(wt) ?f en1 = h, e;n =0, (5.46)
1 — 2hsin(2¢p) cos(wt) if e;7 =0, €12 = h.

The cos(wt) term comes from e~** + c.c., whereas the cos(2¢) term, for example,
comes from cos? p — sin® ¢ = cos(2p). The distinction that we made in (5.46)
concerns the two possible linear polarization states.

Contrary to the coordinates x!', 22 which are constant, the physical variables
x = pcosy and y = psinp describe the distance relative to the center. The
physical oscillations lead to a particle configuration which is an ellipse with very
tiny eccentricities (h < 1). From the type of oscillation one can infer the polar-
ization of the incoming wave. The two independent polarization states form an
angle of 7. Therefore the oscillations correspond to a quadrupole moment of the
mass distribution: the gravitational waves induce a quadrupole oscillation of the
mass distribution. Conversely we expect that mass distributions with oscillating
quadrupole moment should emit gravitational waves. In order to study this phe-
nomenon further, we have to learn more about the energy and momentum of a
gravitational wave.

5.4 Energy and Momentum of a Gravitational Wave

We now want to determine the energy-momentum tensor of a gravitational wave
which is a solution of the first order equation in h (|h,,| < 1)

1) —
R, =0. (5.47)
The solution to this equation is the weak wave solution that we derived before:

Ry = e exp (—ikya?) + c.c. (5.48)

The energy-momentum tensor of a gravitational field is known from Eq. (3.19):

4 (2)
g = (R@)——(g“”R) ) (5.49)

T 8aG 2
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5.4 ENERGY AND MOMENTUM OF A GRAVITATIONAL WAVE

with g, = 1w + hy. Using R,(Py) = R,(},,) =0 and R = g”” R,, we get

C4

b’ = Tonc 2R — 1™ RE) + nuwh® RS — hyun RO
4
C 2 o (2
= 1o 2R — muwn” RG] (5.50)

where we used ¢" = n* — h*” which follows from ¢"“g,, = 4. In order to

consider this expression further, we need the Ricci tensor R,(f,,) In order to be
able to calculate the Ricci tensor

v 2 v v
R,E?K) - (gA R)\NVH>( ) = 77>\ Rg\QM)Vﬂ - h>\ Rg\lu)un (551)
we need the Riemann tensor which is given by Eq. (17.4):
R _ 1 829)\1/ a2g,un . 829uu N 829)\/1
Avs =9 \ grdzs | Oz 0xr  Oxrdxc OxkdxY
+ 9no (Fnu/\ra;m - an)\ro,uz/) . (552)

The first line of this expression (which contains only first order terms in h) gives
rise to the second term in (5.51) with g;; = h;;. The second line (which is of
second order in h) gives rise to the first term in (5.51) if we insert the Christoffel
symbols

1 (0h", Oh", Oh
o(l) _ — H v Hv
Q) = ( o T o axg)' (5.53)

w9

This yields the first term in (5.51) if we multiply with 7,,. In total, we get the
following expression for the Ricci tensor that we searched for in order to evaluate
5.50:

RO _ h_’\” { 0%hy, N O*hy B *hy, B ?hs ]
Hr 2 | Ozrdxt  Ox Ox¥ Oz Ozt OzHOx

_1_1 {WU’U on’s 8h”l,] [ah"u N oh?y Gh,m} B
4 ox"s ozt 0Ty

oxV + oxv 0x°
L [Ohee , Ohor Ol [0, OB on,
4| Oz oxr 0x° Ox )y OxH 0, |

(5.54)

The second line of this expression vanishes because of the gauge condition (3.18).
The remaining terms are quadratic in A and of the form

hyhor = [eW exp(—ikyz?) + c.c.] [e(m exp(—ikyaz?) + c.c.]
= € Con [eXp(QiZ')\k)‘) + 24+ exp(—2ix>\k’\)] ) (5.55)

We can see that on the one hand there appear oscillating terms of the form
exp(42ikyz?) and on the other hand there are also terms which do not depend
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5.4 ENERGY AND MOMENTUM OF A GRAVITATIONAL WAVE

on the coordinates z# at all. If we average over time, this implies that the
oscillating terms drop out (their average over time being zero) such that we are
left with terms of the form

< e, exp(—ikyz?) + c.c.] [eon exp(—ikra™) + c.c.] > = 2R (e),e0x)  (5.56)

where (---) denotes time-average. For plane wave solutions derivatives corre-

spond to multiplication with &, so
Ohy
oz

We can now plug all these terms which are quadratic in & into Eq. (5.54) replacing
all partial derivatives by factors of k:

= —iknhy. (5.57)

<R(2)> =R (e)w)* (kuk,‘ie)\u + kkkueuﬁ - k)\kneuu - k:,ukl/e)\fi)

UK

1 * o oz g
-3 (kxeox + kneor — koenn) - (K17, + kue™ — k7€) (5.58)

where we used that the gauge condition 29,h*, = 0,h*, sets the second line of
(5.54) to zero. In order to simplify this expression further, we use the gauge
condition again, essentially replacing the h-terms in it according to Eq. (5.57)

and find
1
(M) kukren = §(eA,\)*k"k,{eW. (5.59)
Imposing the null condition £,k* = 0 we obtain
@y _ 1 Ay Lo
<R,un> = §kukn (6 ) Exv — 5’6 /\‘ . (560)

Thus the energy-momentum tensor (5.50) of the gravitational wave reads

Tav. C4 AR * 1 A |12
t;gw = @kukl/ [(6 ) Exk — §|€ )\‘ :| (561)
where we used that
nw,np"(Rg)> X N’ kpko = 1w kk, = 0. (5.62)

We can further simplify the energy-momentum tensor by specializing to the case
of linearly polarized waves with either e;; = —egs # 0, €19 = €97 = 0 or €17 =

—egp =0, e12 = ey 7é 0:

4
e — &i—Gkayh? (5.63)
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Energy in this formula being proportional to frequency squared is exactly the
type of relation that we would intuitively expect. Furthermore it is clear that
tu o k,k, because ty; is the current of momentum which should be proportional
to k;. We see immediately that measuring such energies will be extremely dif-
ficult because h? is very small. A wave propagating in the z*-direction has the
wavevector k, = (%, 0,0, %) The energy current density

5
Duras, = Clipny, = =K (5.64)

for such a wave is then given by

energy c

w?h?, (5.65)

) v. — 7. =
% time - surface 87 G

5.5 Quadrupole Radiation

Oscillating charge distributions emit electromagnetic waves. In analogy we expect
oscillating mass distributions to emit gravitational waves. We quickly repeat the
case of electromagnetic dipole radiation before turning to the case of oscillating
mass distributions.

5.5.1 Dipole Radiation in Electromagnetism

In electromagnetism one finds that an oscillating dipole moment
p(t) = po exp(—iwt) + c.c. (5.66)
emits electromagnetic waves whose power per solid angle is given by

ap_
dQ  8mc?

|p|*sin” 6 (5.67)

where @ is the angle between p and k where k is the direction of propagation. This
is sketched in Fig. (3). The total emitted power can be obtained by integration
over 6:

P=—|p (5.68)

5.5.2 Gravitational Quadrupole Radiation

The computation of the emitted gravitational radiation is similar to electromag-
netism but also more involved since the source terms are rank 2 tensors. We will
proceed in the following steps:
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5.5 QUADRUPOLE RADIATION

Figure 3: Sketch of the waves that are emitted by a dipole in electromagnetism.

1. Calculate the asymptotic fields emitted by a source T},,.
2. Reduce the result to spatial components.
3. Apply the long wavelength approximation.

The setup is sketched in Fig. 4. In contrast to the electromagnetic case there is
no gravitational dipole radiation. The density is given by

p(r.t) = p(r)exp(—iwt) + cc. = p= /d3r rp(r) = MR, . (5.69)

where M is the total mass and R, is the center of mass. If we choose the
center of mass system as the inertial system then p = 0. Consequently p = 0 in

X

=l

To

Figure 4: Sketch of the setup for gravitational wave emission. The source has
spatial extent ry. The observer is at position r.

31



5.5 QUADRUPOLE RADIATION

all inertial systems. We shall now assume an oscillatory mass distribution of the
form

#0 ifr <nrg

] (5.70)
=0 ifr > 0.

T (r,t) =T, (r) exp(—iwt) + c.c. {

This is only one Fourier component. Thus a generalization is possible by inte-
grating over w. According to (3.22) the retarded potentials are given by

4 e — o
hWWJ):—7§em%%wﬂ/d%ﬂﬂﬂﬂfm%1ﬁwﬁﬂ)+QQ (5.71)
where we used
_ /
—mu:—m{pjr H}:—mpmmr—W| (5.72)
C

to obtain the phase factors. Furthermore we have introduced

1
SNV(T) = Tuu(r) - §T7}UJT(T)' (573)
We now assume ry < r with k = % = 27“ For large distances we have |r| > 1
and thus

/

w—rw:r—r:’:rh+o(%ﬂ (5.74)

and
exp [ik|r — 7'|] = explikr] exp[—ikr’] (5.75)
where we defined k = k~ = ke,. This way we obtain for (5.71)

4G 1
By (7, t) = 46l exp [—ikya*] /d3r’ S (1) exp [—ikr'] 4c.c. (5.76)

ctr

~~

S ()
where S, (k) is the spatial Fourier transform of S, (7). This yields
Py (7, t) = €, (7, w) exp [—ikya?] + c.c.. (5.77)

The amplitudes are defined as
4G 1

e (r,w) = 6—4;5‘#,,(]@) (5.78)
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and are proportional to % They depend on * = e, and w via k = ke,. The
energy current passing through a surface element r2dSQ is given by

7

AP = ct5™ dft = ot “r24Q). (5.79)
r
Plugging in Eq. (5.61) for 5™ we obtain

d—P—C C4 kokixir2
aQ 167G

) 1
(M) er, — 5’6)‘)\|2 : (5.80)

In the derivation of (5.61) we assumed e, = const., whereas here we have e, %
The energy-momengum tensor 5" contains partial derivatives of the h,,, which
would lead to additional term o< % With e, = const., the derivatives just lead
to factors of k, o % In the far field and distant observer approximation we have
r > X and can thus neglect the additional terms since % < % Using

kix:k:-'r:k:g (5.81)
T r c
in Eq. (5.80) we get
dP  Gu? 1
i uy * = 2
o o [T TR IR (5.52)

where T, (k) is the Fourier transform of the source distribution.

We proceed with the second step as outlined in the beginning: we want to
reduce our results to spatial components. The source distribution can be written
as

Ty(r,t) = (271r)3 /dgk T (k) exp [—ikxa?] + c.c.. (5.83)

For weak fields the covariant derivative in the energy-momentum conservation
simplifies to an ordinary derivative and the continuity equation reads

k, 7" (k) = 0. (5.84)
In particular we find for v =0 and v =1
koT™ = —k,T% and koT™ = —k;T". (5.85)
We can define a three dimensional unit vector k; = % and obtain for (5.85)
T% =T = —k, T, (5.86)

T% = ke T (5.87)
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5.5 QUADRUPOLE RADIATION

All non-spatial components in (5.82) can thus be eliminated and we calculate
TMV*TW/ — nuanUTuy*TpO'
_ TOO*TOO -9 Z TOi*TOi + Z TZ]*TZ_]

1]

= kikejkhen T T™ — 2k ke 0y T T™ + 6385, T T, (5.88)
T A — nApr)\
— T00 _ Z T
= kike, T — 65T, (5.89)
T 2 = kb khe T T™ — 6,5k T9*TV™ — 6y beshey T9* T, (5.90)
Inserting these expressions into (5.82) we get
dP  Gu? .
— = = AT (k) T (K 5.91
oS = oMY (k)" T (k) (591
where we introduced
1 PO 1. ~- 1. -4 | IPSIPNRPRA
Aij,lm(eu 90) = 5il5jm - ééijélm - 26Zlkjkm + ééijklkm + §5lmkikj + 51{31]{3]]{3[]{3771
(5.92)

Having reduced the formula for the radiated power to spatial components,
we now turn to the last step that we outlined in the beginning: we apply the
long wavelength approximation, i.e. we assume A > ry which simplifies the
energy-momentum tensor as follows:

T (k) = /d37" T (r) exp(—ikr)
= /d37’ T9(r)(1 —ikr + ...)

.. wQ ..
~ / Prrof) = -2Q0 (5.93)
The object Q¥ will turn out to be a quadrupole tensor. From covariant conser-
vation of energy-momentum, 7" , = 0, we get
;T (r,t) = —0T(r,t) and T (r,t) = —0T%(r,1). (5.94)

Using Eq. (5.70) we obtain
2

0:0,T (1, 1) = ORT(r, 1) = —%TO%,@ (5.95)
.. wz
= 9;0;T" (r) = —gTOO(r). (5.96)
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5.5 QUADRUPOLE RADIATION

Since we are in the non-relativistic regime (A > ry, v < ¢) we have T% ~ pc?.

Therefore Eq. (5.93) yields

2
2/d3r TY(r) = /dsr 2z (8,0 T™(r)) = _w_2 Er 2’ T(r)  (5.97)
c
where we integrated by parts twice in the first step and used Eq. (5.96) in the
second step. According to the definition in Eq. (5.93), we find

. o 1 o
QU = /d3r sz.f(]jp<'l") = —2 /dg’l“ J]z[L'jTOO(’I’) (598)
C

which we can obviously interpret as the quadrupole tensor of the mass distribu-
tion?. Because we are in almost Minkowskian spacetime, we can compute Q% in
three-dimensional Cartesian coordinate. Inserting (5.93) into (5.91) we get

dP B Guwb

Db U ij* ylm
dQ 47TC5Azj,lmQ Q . (599)

We observe that the corresponding formula in electrodynamics looks very similar
but it depends on w?* rather than w®. This is just a reflection of the fact that
the electromagnetic radiation is dipole radiation whereas gravitational dipole
radiation does not exist (the dipole moment of any mass distribution vanishes in
the center of mass system).

Furthermore we note that QY are constants (they do not depend on 6 or
¢). The complete angular dependence is encoded in A;;;, in which the vector
k appears. This is the unit vector which indicates the direction from the mass
distribution to the observer and therefore clearly depends on 6 and ¢:

A~ . ~

(k') = (l%x,ky, l;’z) = (sin 6 cos p, sin fsin p, cos 0). (5.100)

This simplifies calculations, of course, because the quadrupole moment can be
calculated once and forever and the specific angular dependence is only to be
considered in the form of A;j ..

As an example we consider a quadrupole mass distribution in the princi-
pal axis system: the only non-vanishing elements are on the diagonal, @Q);; =
diag(Q11, @22, Q33). In this case the only non-vanishing terms in (5.99) are those
with ¢ = j and [ = m. This means that there appear only even powers of /%x, /;’y,
k. in Eq. (5.92). The emitted power has an angular dependence of the form

dP

a "~ aj cos* 0 + ay cos? 0sin’ O + ag sin 6. (5.101)

9n the literature one also finds different definitions of this tensor. For example, one can
define a traceless version where x'z7 is replaced by z*z7 — %7"25”.
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5.5 QUADRUPOLE RADIATION

To get the total emitted power, we have to integrate Eq. (5.99) over dS):

2
/ 42 Moy = 2 (1608~ 40,560+ G (5.102)
where we used
A 4
A 47

Inserting this result into (5.99) we obtain for the total emitted power

P= /d9£ - QG“ (Z QY2 — 2) . (5.105)

Note that @;; can be defined traceless such that the second sum in the brackets
vanishes. Furthermore one can assume a more general time dependence than just
e~ If we had defined the quadrupole moments in a traceless form,

3
Qii
i=1

Q(t) = /d3 (xixﬂ' — %735“’) p(t,x), (5.106)

then instead of Eq. (5.105) we would have found

= _<kaka> (5-107)

where (---) denotes a time average.'’

10Tn the literature, one finds also the formula P = 15 (Q;, Q). The different prefactor arises
if one defines the quadrupole tensor with an additional factor of 3 as compared to Eq. (5.106).
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6. SOURCES OF GRAVITATIONAL WAVES

6 Sources of Gravitational Waves

We want to consider different physical systems whose dynamics leads to the
emission of gravitational waves.

6.1 Rigid Rotator

As a first example we consider the emission of gravitational waves by a rigid
rotating body. Consider a coordinate system KS’ with coordinates z] in which
the body is fixed. In KS’ the mass density p/(7’) is time independent. We choose
KS’ such that the quadrupole tensor ©;; is diagonal:

Ii 0
@;j:/dgr’ g (r) =0 I, 0]. (6.1)
0 0 I3

We assuume that the body rotates with angular velocity Q2 around the zf-axis.
The orthogonal transformation to an inertial system IS with coordinates z,, can
be written as

cosit —sinQt 0
r, =a", ()2, with o™, (t) = | sinQt cosQt 0] . (6.2)
0 0 1

The tensor ©;; in IS reads

/ﬁ%xxﬂ
= [ @) @) o)
A, 63)

where we used d*r = d3’ and p/(r') = p(r) since the density transforms as a
scalar quantity. With Egs. (6.1) and (6.2) we can compute (6.3):

L+1, -1
[ B

O©1:1(t) = 5 cos(20Qt)

I — .
@12(t) = ! 2 SlH(2Qt) (64)
Omlt) = 1 ; L _ L ;12 cos(201)

Ou(t) =1L,  Oult) = Ou(t) = 0.
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6.1 RIGID ROTATOR

This is of the form

©,; = const. + [Q;; exp(—2iQt) + c.c.] (6.5)
1 ¢ 0
I — 1
with Q; = ——2 -1 0]. (6.6)
0 0 O

Comparing Egs. (6.3) and (6.5) we conclude that a rotating rigid body can be
interpreted as a mass distribution whose rotational frequency €2 leads to gravi-
tational waves of frequency w = 2Q2. We introduce the moment of inertia I with
respect to the rotation axis and the ellipticity of the body ¢,

LI

I=1+1, €= .
trae I, + I,

(6.7)

We can then write

32G0N°
P= 5 eI’ (6.8)

which is clearly the type of formula that one expects for quadrupole radiation

(Q~el).

6.1.1 Example: The Double Star System

As an example we consider a binary star system (masses M; and M;) rotating
on a Keplerian ellipse. Assuming a circle with constant radius r, we can consider
the system as a rigid rotator:

M, M.
I~ Il = MlT]\ZT'Q, ]2 ~ 07 e~ 1. (69)
The circular orbit is characterized by
MMy, GM;M, » GM
My + M, = 72 ~ = r3 (6.10)

=p

where £ is the reduced mass and M = M; + M,. Inserting this into Eq. (6.8) we
find

3GMIME(M, + My) 32 G* .,
B 5¢ord - €C5T5M e (6.11)

It is convenient to express the emitted power in terms of

P

5
Lo = el 3.63 x 10™erg 5!

=2.03 x 10°Mgc? s™* (6.12)

Q
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6.1 RIGID ROTATOR

which yields

32 (GM\° 12
P — — ( 027“ > WLQ (613)

For example, coalescing neutron stars in the final stage have r ~ Rg and thus

fé‘f ~ O(1) and P = Lg. In general, for order of magnitude estimates one can
use
GM\’
P=Lo|—= 6.14
- (5) (6.14)

for systems of typical scale R.

Due to the emission of gravitational waves the system loses energy and thus
its distance R shrinks, till the two bodies coalesce after a time tg,,. (inspiral
time). In the Kepler problem the total energy is

Gmlmg

E=-— . 6.15

5 (6.15)
During the inspiral process, the system loses potential energy which is emitted
in the form of gravitational waves. Thus dF = —Pdt and

dE Gmamydr 32 G*mim3(my + mo)

dt 22 dt 5 (S 7o ‘
Upon substituting z(t) = [r(¢)/r(0)]* we can rewrite the last equality in (6.16)
as

(6.16)

d_ZL’ B _256G3 mlmg(ml + mg) _ 1 (6 17)
dt 5¢P r4(0) i '

This is solved by @ = 1 — ¢/t such that we find

r(t) = r(0) (1 _ ! )1/4. (6.18)

tspir.

Next, we want to calculate the strain of such a system. We evaluate the
expression (5.78) for e, in analogy to what we did with Eq. (5.79). We can
express T}, in terms of its spatial components (ko7T% = k;T% and kT = k;T%)
which in turn can be expressed in terms of @;;:

w2

Tij(k) = _7Qij‘ (6.19)

With the definitions in (6.6) and (6.8) we obtain

1Gle 1

2
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6.2 THE PSR 1913+16 SYSTEM

where D is the distance between source and observer.
If there are two polarizations and e;; = €15 then we have for the dimensionless

strain
Gle ,1
h=\/e2 +é2, = 2\/5?925. (6.21)

For a binary system characterized by masses m = m; = ms on an orbit of radius
r, this yields

2 2
poOm o pom

~ = .22
T 2 Dr (6 )

where Rg = 2G'm/c? is the Schwarzschild radius of the system.
For two neutron stars with m = 1.4Mg, r = 100 km (i.e. T = 10725, Q = 10?
Hz) at a distance D = 30000 ly we get

h~ 10718 (6.23)

This corresponds to the relative amplitude of the oscillation of a ruler’s length
when the gravitational wave passes by.

6.2 The PSR 1913416 System

The Hulse-Taylor binary system is a famous example for the confirmation of
the gravitational wave theory. Russell Alan Hulse and Joseph Taylor got the
1993 Nobel Prize for the discovery and measurement of this system. The system
consists of two neutron stars, one of which is a pulsar whose radio signals have
been observed for many years. From the phase shift of the pulsar one can infer
the orbital parameters

7 =10.06 s,

T = 27906.980894 4+ 0.000002 s,
my = (1.442 4 0.003) Mo,
ms = (1.386 + 0.003) M,

where T' is the orbital time of the stars. Because of these very accurate pulse
times, very precise astrophysical measurements can be done with this system. Let
us ignore ellipticity of the orbit for an order of magnitude estimate. We obtain
for the spiral time

tepir. ~ 107 yr. (6.24)

From Kepler’s law we have T o r3 such that

92— =3—. (6.25)
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6.2 THE PSR 1913+16 SYSTEM

Furthermore Eq. (6.18) implies that
dry _ _1r(0) (6.26)
it )y~ Aty '

dr  3drT 3 T

& AT St

Therefore

~ 10712 (6.27)

Through the phase shift of the pulses one can measure the variation in the orbital
time and finds experimentally

dT
i —(2.4340.03) x 1072, (6.28)
This is the same order of magnitude as the above simplified GR estimate.

So far we approximated the actual orbit by a circular one. We want to refine
the analysis by taknig into account that the real orbit is actually elliptical in order
to make more precise predictions. As we will see, this more detailed analysis yields
very good agreement with the experimental data (6.28). Accounting for elliptical
orbits (see the textbooks of Maggiore or Straumann for derivations), we have for
the semi-major axis (G = ¢ =1)

my1ma

_— 6.29
a o (6.29)

where F is the total energy. Denoting by L the angular momentum, one finds
for the squared eccentricity of the orbit

2EL?
o = 1 4 2EL i tma) (6.30)

mims;

The orbit can be described as

a(l —e?)
" 1+ ecos? (6.:31)
The emitted power reads
8 2,,2 .
T [12(1 + cos¥)? + €2 sin® 9] ) (6.32)

- 15a2(1 — €2)?

where (---) denotes the time average over a period T,

<--->:%/0(---)dt:%/oﬂ(---)%. (6.33)
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6.2 THE PSR 1913+16 SYSTEM

Using the third Kepler law

2ma’/?
"= G+ .

one finds after averaging

32G4m2m2(m1 + m2) 73 37
P= L2 14+ —e*+ —e' ). 6.35
Bc5ad(1 — e2)7/2 ( 21" T o6° (6:35)
Then averaging

da  mimgdE

dt — 2E? dt (6.36)

over time, one finds

da 2a? dE 64G4 myms (ml i m2) 73 a7
<dt> m1m2< dt > 505 a3<]_ _ 62)7/2 ( + 246 + 96e ) (6 37)

Using Kepler’s third law again, this yields

. 4 4

<§> _ g<a> = mma(my £ ma) £ (e) (6.38)
7 7

where f(@) = (1 —+ %62 —+ 3—6€4> ﬁ (639)

If we replace a by T in the right-hand side of Eq. (6.38), we conclude

T 96 —
<7> T 56 (T)2m)85 (my + a7 (). (6.40)

Plugging in the measured ellipticity of e ~ 0.617, one gets

Tineoretical = (—2.40243 4 0.00005) x 1072 (6.41)

which is in perfect agreement with the measured data. This is indirect evidence
for the existence of gravitational waves.
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7. THE POST-NEWTONIAN APPROXIMATION

7 The post-Newtonian Approximation

Astrophysical sources of gravitational radiation are held together by gravitational
forces. For a self-gravitating system of mass m we have

v RS
<c> ~ (7.1)
where Rg is the Schwarzschild radius and d is a typical distance. This relation
follows immediately from r? &~ Gm/r ~ Gm/d. We note that Rg/d is a measure of
the strength of the gravitational field close to the source. As soon as we consider
v/c corrections to the orbital motion, for consistency we have to consider also
(Rs/d)Y? corrections to the metric (corrections to the flat background).

Moderately relativistic systems require a post-Newtonian treatment. The
assumptions that we will use are

e The systems under consideration are slowly moving, weakly self-gravitating
systems such that an expansion in v/c or (Rg/d)'/? is possible.

e The energy-momentum tensor 7),, has a spatially compact support (7),,(r) =
0 for r > d).

If wg is a typical frequency of the system, then typical velocities are v ~ wsd.
As we saw before, the frequency of the radiation of the emitted gravitational
radiation is w = 2ws ~ 2v/d. In non-relativistic systems we have v < ¢, thus
c/v > 1 and the wavelength of the emitted radiation satisfies A = ¢/w ~ cd/v >
d.

In analogy to the electromagnetic case, for non-relativisic sources it is conve-
nient to distinguish between:

e near field regime (r,d < \) where retardation is negligible and potentials
are static,

o far field regime (r > \) where retardation is crucial and we have waves.
The small parameter in powers of which we will perform an expansion, is*!
RS 1/2 v
e ~ _— ~ —, 72
(%)~ (7:2)

We demand that
i
7700

~ O(e?). (7.3)

"Note that some references also use the convention € ~ (v/c)?2.
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7. THE POST-NEWTONIAN APPROXIMATION

For a fluid with pressure p and energy density p, we thus have
Poe (7.4)
P
We expand the metric and the energy-momentum tensor in the near field regime
in powers of ¢.

As long as the emission of radiation is neglected, a classical system subject to
conservative forces is invariant under time reversal. Under time reversal, gy and
gi; are even (i.e. there appear even powers of v and thus of ¢, as well) while go; is
odd (i.e. only odd powers of v and thus of € appear). By inspection of Einstein’s
field equations, one finds that in order to work consistently to a given order ¢, if
we expand goo up to O(e"), then we have to expand go; up to O(¢" ') and g;; up
to O(e"?).

The metric is expanded as follows:

go0 = =1+ Pgao + Dgoo + ...
Joi = @ go; + O go; + ... (7.5)
gi; = 0+ Pgiy + Dy + .
where (Mg, denotes terms of O(¢). Similarly, for the energy-momentum tensor:
T00 — Q)00 4 (700
T% = Mo L G)p0i (7.6)
T4 = @i 4 Wi 4
We now want to insert these expansions into Einstein’s field equations and equate

terms of the same order in €. Considering v < ¢, the time derivatives of the metric
are smaller than the spatial derivatives by O(e):

0 0
pri O(v)% or do ~ O(€)9; (7.7)

where we used that dy = %&. The d’Alembert operator applied to the metric, to
lowest order becomes the Laplacian:

(_18_2 I A) = (0() + 1) A. (7.8)

This means that retardation effects are small corrections.
Consequently, we also have to expand the geodesic equation
d*zt _, dxtda”
dr?2 M dr dr’
In chapter 9.3 of GR I, we considered the Newtonian limit where we just had to
use goo = —1 + Pgoo, go; = 0 and g;; = &;;. It thus follows that the terms *) g,
) goo and gi; give the first post-Newtonian order for which we use the notation
1PN. The terms @ go, ) gq;, (4)91-1- give the 2PN approximation (which is already
highly complicated), and so on.

(7.9)
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7.1 The 1PN Approximation

It is useful to choose a simplifying gauge condition right from the beginning. A
convenient choice is the de Donder gauge condition

0u(v/=g9") = 0. (7.10)

(this is a harmonic gauge condition, i.e. the coordinate functions satisfy the
d’Alembert equation).

The next step is to insert Egs. (7.5), (7.6) into Einstein’s equations (together
with (7.7) and (7.10)). We skip the explicit computations but state only the
results'?. One finds for @ gy, the Newtonian equation

8nG (o
A [@go] = S 700 (7.11)

while the 1PN correction to the metric yields

A[Pg,] = _8:_4% 0) o0, (7.12)
167G (4,05
A [ gy] = 4 o, (7.13)
A [(4)900} = 82 [(2)900] gzja 0; [ 900} -0 [(2)900] 0; [(2)900]
87CTG [0 | @)ié _ 9@ g, @0 (7.14)

where A = §9;0; and the sum over repreated spatial indices is performed with
5%,

In order to write down a solution of (7.11) with the boundary condition that
the metric is asymptotically flat, is

O (' t)

1
|lx — /| (7.15)

g = —20  with 6(t, x) = _g /d%/

where the Newtonian potential is U = —c%¢. Similarly Egs. (7.12) and (7.13) are
solved by
gOz fz (717)

where we defined

4G [ 5 ,OTY%(x t)
—_—— :E —
ct |z — |

(7.18)

12For details, see section 9.1. in Weinberg’s book or section 5.2 in Straumann’s.
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7.1 THE 1PN APPROXIMATION

In order to solve (7.14), we replace P gy, on the right-hand side by —2¢.
Furthermore we use the identity

(V6)? = 09016 = SA(8) — 659, (7.19)
and we introduce a new potential ¢/ such that
Wgoo = —2(¢° + ). (7.20)
Eq. (7.14) then reads
Ay = 03¢ + 47;G (@00 4 @7y (7.21)

Using the boundary condition that 1) vanishes at spatial infinity, 1 can be written
as
d3x’

|z — |

P(x,t) = — (%8&25 + C—Ci (BT +) + DT (2, t)}) . (7.22)

Notice that ¢ and &; are not independent due to the gauge condition (7.10)
which imposes the contraint

400p + VE = 0. (7.23)

From Egs. (7.15) and (7.18) one can see that this condition is indeed satisfied
due to energy-momentum conservation at the 1PN order (since T is covariantly
conserved in the exact solution, it has to be conserved at all post-Newtonian
orders independently).

We observe that ¢, ¢, & are instantaneous potentials. Our order of approxi-
mation is thus insensitive to retardation effects.

Note also that ggg can be expressed very simply as

goo = —€2V/¢ + O(9) (7.24)

where V = —c?(¢ + v). This follows immediately if we expand the exponential
and write (7.24) as

2
9002—1—%26—‘2/—%—#@(%)
=—1-2(¢+v) = 2(¢ +1)* + O(°)
= —1—2¢ —2(¢* + ) — 2(¢* + 2¢)) + O(°). (7.25)

Using that ¢ = O(g?) and ¢ = O(e?), we see that this is just

goo = —1 + @goo + Wgoo + O(e). (7.26)
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Putting together (7.11) (with ?ggg = —2¢) and (7.21), we have

Alp+v) = o+ ir—f (@00 4 )00 @)id] (7.27)

To this order we can set 93¢ = 93(¢ + ) and replace A by [J. We then obtain

e n_ 4AnG
OV = ——2 [T+ T = -"Z¢ (7.28)

c? c?

where we replaced (700 4 700 _ 700 and AT% — T% The solution of
Eq. (7.28) is given by a retarded integral

_ /
(T 4 T (t _fz—e |,w’) (7.29)
c

[z — 2| —— —
=0

V(x,t) = G/d?’x'
and similarly for &; defined as V;, given by

1 _ /
Ve ) =G [ o Lo (1 ) (730

C

where o, = T,
To summarize, in harmonic coordinates the 1PN solution can be written in
terms of two functions V' and V; in the following way:

2 2 1
mm 1+ 2 Zviio(L).
C C

ct

4 1
Joi = —gvi +0 (g) ; (7.31)

2 1

7.2 Motion of Test Particles in the 1PN Metric

To get the equations of motion of a particle of mass m in the near zone, we have
to solve the geodesic equation which is encoded in the following action which
reads in curved background

dz” dav \ V/?
S: —mc/dt (_g’wﬁﬁ>

V' vivd 12

C

We are interested in the equations of motion for a binary system. If we restrict
ourselves to the lowest PN corrections, it is possible to treat the two masses as
point-like.
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7.2 MOTION OF TEST PARTICLES IN THE 1PN METRIC

In curved space the energy-momentum tensor of a set of point-like particles
is given by

w
day dxy, (5

o \/_Z% dtdt

6O (x — x4 (1)) (7.33)

where the masses are denoted by m, and x# are the coordinates (a = 1,..., N).
Furthermore we used the definitions

1 dzt

@ = ——F/— and H = ama_-
L Pi = Yama—
c2

In an N-body system (a > 2) the metric felt by a particle b is obtained by taking
the energy-momentum tensor of all other particles as a source. This amounts to
replacing 3, by >_, 4, in Eq. (7.33). We expand the determinant of the metric

(7.34)

to second order and using ?) goy = —2¢, we get

—g=1-" goo+Z gi =1 — 46, (7.35)

Therefore the expansion of (7.33) gives

O7%0 (g, 1) Z M0 (x — 24(1))

a(#b)

1
@70 ¢) = Z Ma (502 + 2¢02) 6B (x — x4(1))
| ) | (7.36)
W70 (e, t) = ¢ Z mavt 64 (z — 4 (1))
a(#b)
DT (2, 1) Z mavi vl 63 (@ — x4 (1))
a(#b)

Inserting these expressions into Egs. (7.15), (7.18) and (7.22), one can obtain the
metric in which the particle b propagates. Inserting this metric into (7.32), one
can calculate its action S,. The total action can then be obtained by summing
over all particles, S = ", 5. Expanding the square root that appears in the
integral of the action and demanding consistency of the expansion, only terms
up to O ((v/c)*) give the 1PN correction.

In terms of the Lagrangian, one can verify the following results for the two-
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7.2 MOTION OF TEST PARTICLES IN THE 1PN METRIC

body system:

1
1 1 G
with EO = —mﬂ)% + —mwg + m1m2’ (738)
2 2 r
L S
El = gml'l)l + §m202+
G G
n;lmZ 3(v7 + v3) — Tv1vy — (Poy)(Pog) — Glm + ms)
r r
(7.39)
where 7 denotes the separation vector between the two particles, r = |r| and

r

7 = . The Lagrangians £y and £; describe the Newtonian part and the first
post-Newtonian correction, respectively.

The same can be obtained for N particles (Einstein-Infeld-Hoffmann La-
grangian) :

1 Gmgam
Lo=) §mavg + ) 5 3 (7.40)
@ azr) 7
1 Gmgm . A
Ly = gmavg -y - 2 [Tvg0p + (Fapva) (Fapvp)] +
ab
a a(#b)
Moty mambmC
Yy e - ——ZZZ o (7.41)
a bta a b#a c#a avrac

where a = 1,..., N labels the particles, r, is the distance between particles a
and b, and 7, is the corresponding unit vector. From this Lagrangian one can
derive the Euler-Lagrange equations of the N particle system including 1PN
corrections. These equations are also called the Einstein-Infeld-Hoffmann
equations. Denoting ry, = |z, — x| and x,, = x, — xp, one finds after lengthy
calculations

:—G’Zmbwab {1—4GZ +G2mc( — w“bfbc)_

b#a "ab c#a c#a,b 2rbc
mg 2 2 3 VL gp 2
—5G— + v, —4dv,vp + 2v; — = —
Tab 2 Tab
Cm C
__GZ(mb>GZm b —i—GZmb( ) (4v, — 3vyp) - (v, — vp).
bra N ab c#b,a b#a

(7.42)
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7.2.1 Two Body Problem in the 1PN Approximation

The Einstein-Infeld-Hoffmann equations for the two body problem imply that
the center of mass

mf:cl + m§:c2

x = M (7.43)
my +m;
with
N 1 v,\2 1mgmy G
R A B
is not accelerated, i.e.
d’X
= 0. 7.45
dt? ( )
We can choose X = 0 such that
me  pom < 9 m)
= |— - — 7.46
T {ml + 52 \V )|z (7.46)
my ,u<5m< 9 m>
= |- - — 7.47
T2 [ m * omz \" r }w ( )
where © = @1 — Ty, v = v — U, M = My + My, OM = My — My, p = T2

(reduced mass).
For the relative motion we obtain from Eqgs. (7.38), (7.39) with (7.46), (7.47)
after dividing by pu:

L=Lo+ Ly (7.48)

with the Newtonian part £y and the post-Newtonian perturbation L;:

1 Gm
Lo=-v>—— 7.49
0 211 ” ( )
3 3u\ vt Gm U o[ vT\2 G?m?
Li=2(1-E) 2 4 20 (302 + Lo2 —(—) — (750
! 8( m>02+2r02(v+mv+m r 2r2c? (7.50)

The corresponding Euler-Lagrange equation is (¢ = 1)

2
@:_G_glw(l_(}_m(ﬁ%)qlﬁ_ﬂ)vu(B_M) (%) )+
T T m m 2m T

LU (4 _ 2—“> | (751)
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Y

A
,':’
4#-

Figure 5: Elliptical Kepler orbit.

Consider the Kepler problem with motion in the plane z = 0 and the perias-
tron lying on the z-axis. Without 1PN corrections one has an elliptic orbit (c.f.
fig. 5) where e is the eccentricity and

1— 2
= u. (7.52)
1+ecosp
One finds
r=a(l—ecosu) where u — esinu = wpt (7.53)
(Kepler’s equation). Here wy = 2% with orbital period T' (¢ = 0 for pas-

sage at perihelion) and w is the so called eccentric anomaly (wyt is the mean
anomaly). We define f = ¢, the true anomaly, such that (c.f. fig. 6)

cosu — €

= = 7.54
cos f = cosy T ccoss ( )
Taking £, from Eq. (7.50), we define
FE
E=— = ,Co + El (755)
L
and
.o J
]=—=7J3rAv
. (rAv)
B 1 3u\ v? wy\ Gm



7.2 MOTION OF TEST PARTICLES IN THE 1PN METRIC

Figure 6: The variable u takes the role of the angle as measured from the center
of the ellipse.

After some lengthy calculations (including an integration over time), one can
get an equation which is analogous to the Kepler equation but with different
coefficient:

2m .
Tbt =u—esinu (7.57)
r=a.(1—e.cosu) (7.58)
where
. = _Gm [1 _ (ﬁ _ 7) i] (7.59)
' 2e M 22
2e U e[, U G*m?
2 2
=14 G [14 (50, 15) ) {ﬂ HERDES (7.60)
2 uy € 11[. 21\ G*m?
2 _ 7Y E ] e _ZH
=1+ 1+ (17-71) 5] {] + (2 m) = (7.61)
2 (—2¢)%/? m 5
7 11— (E_15) — 7.62
Ty Gm [ (m 5) 4c2 (7.62)

(in a bound orbit, ¢ is negative). The eccentricity e of the Keplerian orbit is now
split into a “radial eccentricity” e, and a “time eccentricity” e;. The Newtonian
limit is found by considering ¢ — oo:

_ Gmyp

ar‘c—mo - —92E (763)
2F[? (r Av)?
2 _ 2 _ 2
T le—o0 €t ‘c—>oo 1 G2m21u3 ) L [1’3 ete. <764)
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7.2 MOTION OF TEST PARTICLES IN THE 1PN METRIC

One finds for the true anomaly

cos U — ey 1+ey 1/2 U
o(u) = Rp— or ¢(u) = A, (u) =2 arctan (1 — 69) + g§]
(7.65)
where ey = e for Kepler orbits. This yields
_ 3Gm
QO(U) = wp + (]. + k)Aeg (U) with k = m (766)

with w2 = (27/T)? = Gm/a®. The quantity ey is called “angular eccentricity”
and it satisfies
2 U e1[., 6G*m?
2 _ 2
G=14 g 14 (B o) ] |- 58] wen

For ¢ — oo, we have to make the replacement ey — e.
One can also find the perihelion precession (or periastron precession) per orbit
(c.f. section 25 of GR). After some calculations one finds:

671G (my + may)
o ca(l — e?)

dp (7.68)

Note that a in this formula is the semi-major axis (a(1 — e€?) = p); in section
25 it was half of the Schwarzschild radius, a = %—72” The relevant difference as
compared to section 25 is the fact that we had only one mass (the Sun) in section
25. In (7.68) m = my + my is the sum of the two masses. In view of the non-
linearities that are involved in the describption of the system, this simple result
is far from being obvious.

For the binary pulsar PST 1913416 (c.f. section 6.2), the measured periastron
shift is
ops, = 4.226607 £ 0.00007 deg yr* (7.69)

The GR prediction which follows from Eq. (7.68) and the known orbital element
(given a period of about 7.75 hours, i.e. w ~ d¢ x 1130 deg yr™') is

) my + My 2/3 1
wer = 2.11 (| ——— deg yr (7.70)
Mg
where we used
a 1/3
a= {—2(m1 + mg)} (7.71)
Wo

due to Kepler’s thir law. If we set wo,s. = war, it follows my + mg = 2.83 M.
In order to characterize the pulsar system, several parameters are relevant:
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7.2 MOTION OF TEST PARTICLES IN THE 1PN METRIC

e The parameters which characterize the pulsar itself: right ascension «,
declination 9, proper motion, the ineratial pulse ¢y, the frequency v, and
the spindown parameter.

e The five Keplerian parameters (c.f. fig. 7): T, (period), ¢, (time of passage
at periastron), * = a,sini (i denotes the inclination angle of the orbital
plane with respect to the observer), e (eccentricity), w (angular position of
periastron as measured from the ascending node).

Figure 7: Sketch of spatial arrangement of post-Keplerian orbit relative to ob-
server.

e There are eight independent measurable post-Keplerian parameters (we
state only the five main parameters):
— W (periastron shift),
— 7 (not to be confused with v from Robertson expansion),

— Ag (Einstein time delay) which is related to the transformation from
the pulsar proper time to the coordinate time of the pulsar-companion
barycenter system. One finds

Ag = 7ysinu (7.72)
Tb 13 G2/3 mo (ml + 2m2)
where v = | — e
21 2 a(my +ms)
Mo mi + 2ms my + ma —4/3
= 2.93696 .
= (57) (5) (M5r)
(7.73)

— r = €22 (Shapiro time delay) which corresponds to ¢ = v in Eq. (1.12),

C
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o

— s=sini =cG 3 (T

— 0y = =t = 2 (Im? 4 6myms + 2m3) where we used Egs. (7.67)
and (7.61).

)*2/3 m23my1

o

Seven parameters are needed to fully specify the dynamics of the two-body
system (up to uninteresting rotation about the line of sight). Therefore, the
measurement of any two post-Keplerian parameters (besides five Keplerian pa-
rameters) allows to predict the remaining ones. These parameters thus constitute
a consistency check for GR.
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8. THE KERR SOLUTION

8 The Kerr Solution

The Kerr solution is one of the most important solutions of Einstein’s (vacuum)
equations. It describes stationary rotating blak holes and it was found in 1963 by
R. Kerr'®. Later on, it was generalized to the Kerr-Newman solution which
describes rotating, electrically charged black holes.

In this chapter we will give an overview over the Kerr solution and the Kerr-
Newman solution without detailed calculations.

The Kerr solution is axisymmetric and stationary. We use the so-called
Boyer-Lindquist coordinates (¢,7,0,p) and we use the following abbrevia-
tions:

A =7r?—2mr +a?, p* =r"+a’cos’d (8.1)

where we set G = ¢ = 1. The Kerr metric reads

1
ds® = E —(A — a® sin® 9)02 dt* + 2asin® O(A — r? — a2)c dtdp+

d 2
+sin* 6 ((r* + a®)* — Aa”sin” ) dgpQ] + p? {% + d921 .

8.1 Interpretation of the Parameters a and m

In order to interpret a and m we look at the asymptotic form of the metric (8.2)
for large “radial coordinate” r:

ds® — — {1 _ 277” L0 (T—iﬂ di? — [4‘”” sin2f + O (%)} dtdp+

r

+ [1 +0 (1)} dr® 4+ 1*(d6” + sin® 0 dp?). (8.2)
r

The examination is easier by transforming to asymptotically Lorentzian coordi-
nates (Cartesian coordinates):

x=rsinfsingp, y=rsinfcosy, z=rcosh. (8.3)

This yields the following form of the asymptotic metric:

ds® — — [1 _ 2am +0 (i)] dt? — [4am +0O <%)] (x dy — y dx)dt+

r 72 73

+ [1 + 0O (%)] (dz® + dy* + d2?) (8.4)

13Phys. Rev. Lett. 11, 237 (1963)
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8.1 INTERPRETATION OF THE PARAMETERS A AND M

where we used sin? 0 dy = = dy — y dz.
In section 4 we computed the metric of the rotating Earth assuming slow
rotation. In Eq. (4.18) we found

2G My
c2r

2G M ~
d32 = |:]_ — :| Cth2 — |:1 + G E:| d'l”2 + QCh()i dxz'dt. (85)

c3r

Identifying % — m, dr? = dz* + dy* + dz* and including an overall sign (since
we used another sign convention in section 4), this metric should coincide with
(8.4).

Using Eq. (4.1),

4G whi 3~ ~n ~
hOz’ = gﬁlka/d T p(’F)Ij, (86)

we infer that 7% is proportional to p% where v; = g;,w*z™ with w” being the
angular velocity of the rotating body. We define

Sk = €klm/d3$ QTZTmO (87)
which is the intrinsic angular momentum of the rotating body. Therefore,
4G ™Sk

With the sign convention of (8.4), Egs. (8.4) and (8.5) indeed take the common

form
2 1 2 1 S
ds?=—1- o) a2+ 1+ o) 6 ditdai—
r 72 r r2
Skl 1 ;

Clearly S* is proportional to the body’s mass M and its angular momentum (cf.
Eq. (4.13)):
aGM 0 GM
= —_— = q—
2 0z c?

Sk

( unit vector along polar axis ) (8 10)
of Boyer-Lindquist coordinates/ * :

Therefore, m is just the mass, and a can be interpreted as the angular momentum
(0<a<1).
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8.2 Kerr-Newman Solution

The Kerr-Newman solution is the extension of the Kerr solution which also de-
scribes electrically charged black holes (¢ = G = 1). We use the three parameters

A=7r?—2Mr+a®+Q? (8.11)
p* =12+ a*cos’ (8.12)
Y2 = (r? 4+ a?)? — a*Asin® 0 (8.13)

where M is the total mass, a the intrinsic angular momentum and () the total
charge. The metric coefficients of the Kerr-Newman metric are

Grr = p_2’ Joo = p2, Jop = 2—2 sin @,
A PP /0
2Mr — (Q? 2Mr — (Q?
gtt:—l—Fr—QQ, Gty = —aT—QQsiDQG
P P

where we assumed a > 0 without loss of generality. This metric contains the
following special cases:

e () = a = 0: Schwarzschild solution,
e o = 0: Reissner-Nordstrgm solution,

e () = 0: Kerr solution.
The electromagnetic field of the Kerr-Newman solution is
F =Qp *(r* —a®cos*0) dr A (dt — asin® 0 dp)+
+2Qp *ar cosOsinf dd A ((r* + a*)dp — adt) (8.14)

where A denotes the exterior product defined in section 15 of GR.
From (8.15) one can deduce the asymptotic expressions for electric and mag-
netic fields (in 7, 6, ¢ directions):

. %_g o(2)

_l’_

E(, th 1
= =09\a
~0

Eso _
rsmBO ) Ts}%lj w0 o (i) (8.15)
r2sin 6 r3 r4
- 52y Sannvof 3
B, = 1?:9 =

We see immediately that asymptotically the electric field is a Coulomb field.
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8.3 Equations of Motion for Test Particles

Let a test particle with electric charge e and rest mass p move in the external
fields of a Kerr-Newman black hole. The geodesic equations are
d*x® dz? da da”
+ 1% ———— =eF%——
N2 AN dA )
The best way to solve this equation turns out to be the Hamiltonian formalism.*
We can simplify the analysis by assuming that the metric is that of a Kerr
black hole ( = 0) and that the motion is confined to the equatorial plane
(0 = 0).1° In this case, the metric has the following non-vanishing components:

(8.16)

2GM
=—1(1- 8.17
gtt < 627" ) Y ( )
a2GM
G =" "5 (8.18)
a’2GM
Gpp = (72 +a’ + —— ) : (8.19)

Denoting by K = uﬁc the total energy and by [ the angular momentum of the

particle, one finds

1
5#7‘2 + uVeg, = const. (8.20)

with the effective potential

2?—2M02 2 —a*(K? - c?) QCC’Y—QM(Z —aK)?

Vgt = — -
it 2r + 244212 2u2c2r3
GM PP—ad*(K?-¢ GM(l — aK)?
__GM  Foa(f—c) GMU-—ak) (8.21)
’ 21272 [12c273

For a = 0 this reduces to the Schwarzschild case.

For a black hole which is spinning extremely fast, it can be shown that for a

particle which spirals in towards the black hole in an accretion disc from very far

away to the innermost circular stable orbit, the fraction < — \%) of its rest en-

ergy is set free. The innermost stable circular orbit can easily be determined from
Eq. (8.21). Thus a rotating black hole allows a gravitational energy conversion
with an efficiency up to = 42.3%)!

These considerations are of astrophysical importance since quasars in the
center of galaxies are supermassive rotating black holes.

14Details can be found in Straumann’s book or the book by Misner, Thorne, Wheeler.

5Note that the equatorial plane of a rotating black hole is distinguished. When we solved
the geodesic equations in the Schwarzschild background, any arbitrary plane which includes
the origin was equivalent.
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