Reparametrization modes in CFTs & applications

Felix Haehl (IAS)

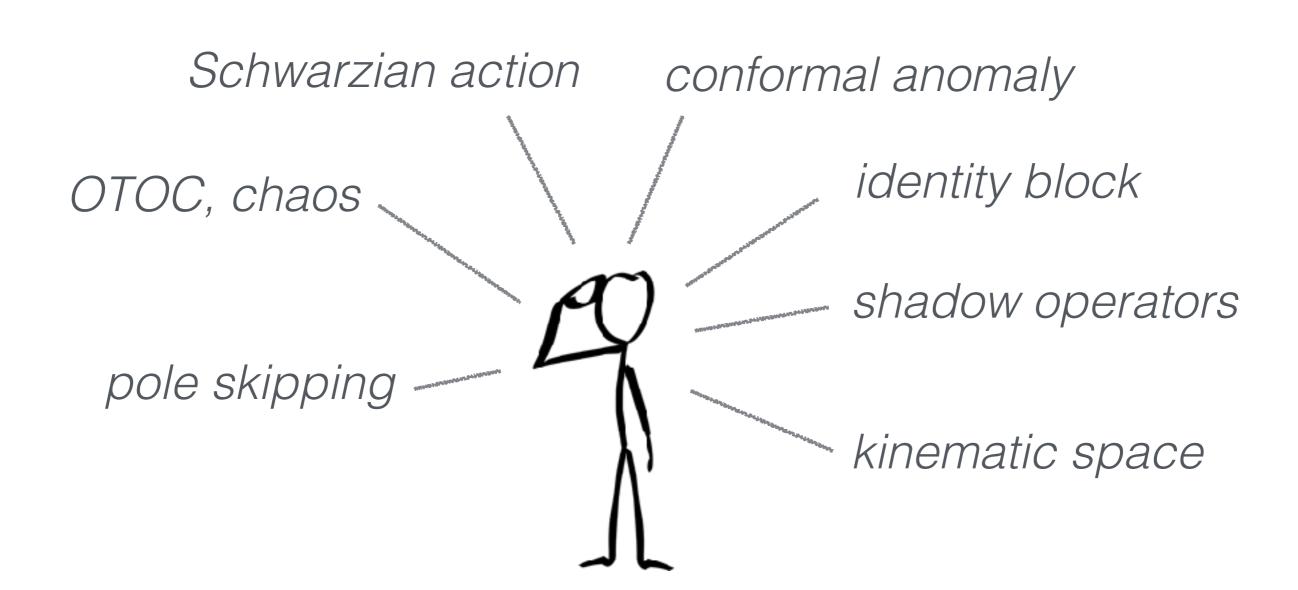
- 1909.05847 with W. Reeves & M. Rozali
- 2005.xxxxxx with T. Anous
- (also 1808.02898 with M. Rozali)

Summary of talk

- Topic: correlation functions in CFTs with large c and large gap
- A theory of reparametrization fields that describes universal aspects of energy-momentum tensor/ graviton exchanges
- Applications:
 - Effective field theory for quantum chaos
 - Do certain conformal block calculations very efficiently

Summary of talk

 Will also provide a language to piece together various ideas from SYK, CFT, bootstrap, holography



Outline

- Reparametrization fields & quantum chaos
 - SYK
 - CFT
 - Comments on thermal correlators
- Conformal blocks
 - Connection with shadow operators
 - Virasoro blocks (d=2)

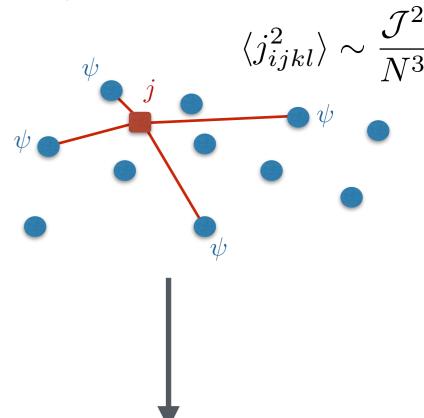
Reparametrization modes in SYK

Reminder: SYK model

- N Majorana fermions with random, Gaussian couplings
- IR: emergent conformal symmetry, $\tau \to f(\tau)$
 - Spontaneously and explicitly broken to SL(2,R)
 - Large N effective field theory of reparametrization Goldstone:

Schwarzian action

$$H = -\sum_{ijkl}^{N} j_{ijkl} \, \psi_i \psi_j \psi_k \psi_l$$



$$S \propto -\frac{N}{\mathcal{J}} \int d\tau \ \{f(\tau), \tau\}$$

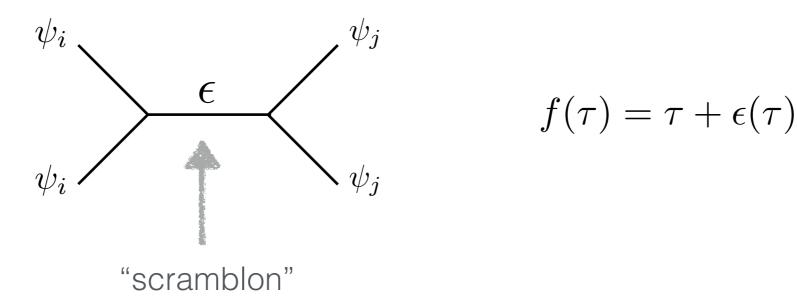
[Kitaev '15] [Maldacena-Stanford '16] ...

 Schwarzian describes dominant "gravity" effects

$$S \propto -\frac{N}{\mathcal{J}} \int d\tau \ \{f(\tau), \tau\}$$

E.g.: enhanced contribution to 4-pt. OTOC:

$$\frac{\langle \psi_i(t)\psi_j(0)\psi_i(t)\psi_j(0)\rangle_{\text{conn.}}^{\text{reg.}}}{\langle \psi_i\psi_i\rangle\langle \psi_j\psi_j\rangle} \sim \frac{\beta\mathcal{J}}{N} e^{\frac{2\pi}{\beta}t}$$



 Schwarzian describes dominant "gravity" effects

$$S \propto -\frac{N}{\mathcal{J}} \int d\tau \ \{f(\tau), \tau\}$$

E.g.: enhanced contribution to 4-pt. OTOC:

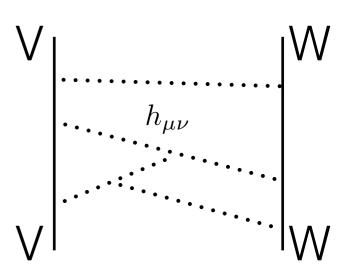
$$\frac{\langle \psi_i(t)\psi_j(0)\psi_i(t)\psi_j(0)\rangle_{\text{conn.}}^{\text{reg.}}}{\langle \psi_i\psi_i\rangle\langle \psi_j\psi_j\rangle} \sim \frac{\beta \mathcal{J}}{N} e^{\frac{2\pi}{\beta}t}$$

• Schwarzian is "hydrodynamic" in the sense that it captures energy conservation [Jensen'16]...

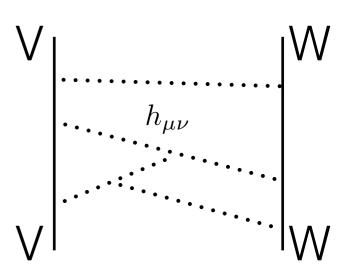
$$\partial_{\tau}E \equiv \partial_{\tau} \left[-\frac{N}{\mathcal{J}} \left\{ f(\tau), \tau \right\} \right] = 0$$

• Is Lyapunov growth more generally described by effective field theory of energy mode? [Blake-Lee-Liu'18]...

- Is Lyapunov growth more generally described by effective field theory of energy mode? [Blake-Lee-Liu'18] ...
- E.g., in 2d CFTs: stress-energy tensor exchanges also maximally chaotic [Roberts-Stanford '14] ...
 - Virasoro identity block
 - Is there some "effective description"?
 - Do we learn something universal about scrambling and nonlinear gravity?



- Is Lyapunov growth more generally described by effective field theory of energy mode? [Blake-Lee-Liu'18]...
- E.g., in 2d CFTs: stress-energy tensor exchanges also maximally chaotic [Roberts-Stanford '14] ...
 - Virasoro identity block
 - Is there some "effective description"?
 - Do we learn something universal about scrambling and nonlinear gravity?



Effective theory of the "scramblon" in CFT₂

Consider large c, large gap CFT and a reparametrization

$$(z,\bar{z}) \rightarrow (f(z,\bar{z}),\bar{f}(z,\bar{z}))$$

• (f, \bar{f}) have an *effective action* determined by $\langle T_{\mu\nu} \cdots T_{\rho\sigma} \rangle$

$$e^{-W[f,\bar{f}]} = \frac{1}{Z_0} \int [d\Phi] e^{-S_{CFT} - \int d^2z \left\{ \frac{\bar{\partial}f}{\partial f} T + \text{c.c.} \right\}}$$

Understood in general (for finite reparametrizations)

by [Alekseev-Shatashvili '89] (c.f. [Polyakov '87] [Witten '88]...)

• For simplicity, consider $(z,\bar{z}) \to (z+\epsilon(z,\bar{z}),\bar{z}+\bar{\epsilon}(z,\bar{z}))$

- $(\epsilon, \bar{\epsilon})$ have an *effective action* determined by $\langle T_{\mu\nu} \cdots T_{\rho\sigma} \rangle$
- Quadratic action:

$$\iint d^2z_1 d^2z_2 \,\bar{\partial}\epsilon_1 \,\bar{\partial}\epsilon_2 \,\langle T(z_1)T(z_2)\rangle + \text{(anti-holo.)}$$

fixed by conformal symmetry

- $(\epsilon, \bar{\epsilon})$ have an *effective action* determined by $\langle T_{\mu\nu} \cdots T_{\rho\sigma} \rangle$
- Quadratic action:

$$\iint d^2z_1 d^2z_2 \,\bar{\partial}\epsilon_1 \,\bar{\partial}\epsilon_2 \,\langle T(z_1)T(z_2)\rangle + \text{(anti-holo.)}$$

The quadratic action becomes local

[... because:
$$\bar{\partial}_1 \langle T(z_1) T(z_2) \rangle \sim \partial^3 \delta^{(2)}(z_1 - z_2)$$
]

$$\frac{c}{24\pi} \int d^2z \, \bar{\partial}\epsilon \, \partial^3\epsilon + \text{(anti-holo)}$$

• $(\epsilon, \bar{\epsilon})$ have an *effective action* determined by $\langle T_{\mu\nu} \cdots T_{\rho\sigma} \rangle$

$$\frac{c}{24\pi} \int d^2z \,\bar{\partial}\epsilon \,\partial^3\epsilon + \text{(anti-holo)}$$

- Reminiscent of quadratic Schwarzian
 - E.g., similar symmetries & charges (however, conformal symmetry not explicitly broken)
- Euclidean propagator:

$$\langle \epsilon(k, \bar{k}) \, \epsilon(-k, -\bar{k}) \rangle \propto \frac{1}{c} \frac{1}{(k^0 + ik^1)(k^0 - ik^1)^3}$$
$$\langle \epsilon(z, \bar{z}) \, \epsilon(0, 0) \rangle \propto \frac{1}{c} \, z^2 \, \log(z\bar{z})$$

Vertex rules

$$\langle \epsilon(z,\bar{z}) \, \epsilon(0,0) \rangle \propto \frac{1}{c} \, z^2 \, \log(z\bar{z})$$

Reparametrizations also couple to external fields:

$$\langle \mathcal{O}(z_1)\mathcal{O}(z_2)\rangle \longrightarrow \left[\partial f(z_1)\,\partial f(z_2)\right]^{\Delta} \, \left\langle \mathcal{O}(f(z_1))\,\mathcal{O}(f(z_2))\right\rangle \qquad f(z) = z + \epsilon$$

$$= \left\langle \mathcal{O}(z_1)\mathcal{O}(z_2)\right\rangle \left\{ 1 + \, \Delta \left[\partial \epsilon(z_1) + \partial \epsilon(z_2) - 2\,\frac{\epsilon(z_1) - \epsilon(z_2)}{z_1 - z_2} \right] \right\}$$

$$= \left\langle \mathcal{O}(z_1)\mathcal{O}(z_2)\right\rangle \left\{ 1 + \, \mathcal{B}_{\Delta}^{(1)}(z_1, z_2) \right\} \qquad \mathcal{O}(x)$$

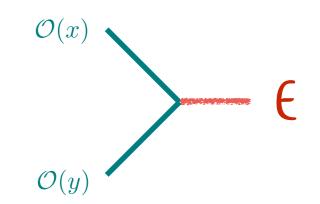
$$\langle \epsilon(z,\bar{z}) \, \epsilon(0,0) \rangle \propto \frac{1}{c} \, z^2 \, \log(z\bar{z})$$

$$\mathcal{B}_{\Delta}^{(1)}(z_1, z_2) = \Delta \left[\partial \epsilon(z_1) + \partial \epsilon(z_2) - 2 \frac{\epsilon(z_1) - \epsilon(z_2)}{z_1 - z_2} \right]$$

$$\mathcal{O}(x)$$
 $\mathcal{O}(y)$

$$\langle \epsilon(z,\bar{z}) \, \epsilon(0,0) \rangle \propto \frac{1}{c} \, z^2 \, \log(z\bar{z})$$

$$\mathcal{B}_{\Delta}^{(1)}(z_1, z_2) = \Delta \left[\partial \epsilon(z_1) + \partial \epsilon(z_2) - 2 \frac{\epsilon(z_1) - \epsilon(z_2)}{z_1 - z_2} \right]$$



- "Feynman rules" for reparametrization field
- At large c, this gives a systematic perturbation theory equivalent to energy-momentum exchanges

$$\langle \mathcal{B}_{\Delta_{V}}^{(1)} \mathcal{B}_{\Delta_{W}}^{(1)} \rangle = \bigvee_{\mathbf{V}} \bigvee_{\mathbf{W}} \mathbf{W}$$

$$\langle \epsilon(z)\epsilon(0)\rangle = \frac{6}{c}z^2 \left[\log z + \log \bar{z}\right]$$

$$\langle \mathcal{B}_{\Delta_{V}}^{(1)} \mathcal{B}_{\Delta_{W}}^{(1)} \rangle = \bigvee_{\mathbf{V}} \bigvee_{\mathbf{W}} \mathbf{W}$$

$$= \frac{2h_V h_W}{c} \left[z^2 {}_2F_1(2,2,4,z) + 12 \frac{\bar{z}}{z} {}_2F_1(-1,-1,-2,z) {}_2F_1(1,1,2,\bar{z}) \right]$$

"global stress tensor block" "global stress tensor shadow block"

Thermal states:

$$\left(z = e^{i(\tau + i\sigma)}\right)$$

$$\langle \epsilon(\tau, \sigma) \epsilon(0, 0) \rangle \sim \frac{1}{c} \sin^2 \left(\frac{\tau + i\sigma}{2} \right) \log \left(1 - e^{i \operatorname{sgn}(\sigma) (\tau + i\sigma)} \right)$$

Thermal states:
$$(z = e^{i(\tau + i\sigma)})$$

$$\langle \epsilon(\tau, \sigma) \epsilon(0, 0) \rangle \sim \frac{1}{c} \sin^2 \left(\frac{\tau + i\sigma}{2} \right) \log \left(1 - e^{i \operatorname{sgn}(\sigma) (\tau + i\sigma)} \right)$$

[FH-Rozali '18][Cotler-Jensen '18]

- Starting point for EFT of quantum chaos in 2d CFT
- E.g., captures Lyapunov growth of OTOC:

$$\frac{\langle W_1 W_2 V_3 V_4 \rangle_{\beta, \text{Eucl.}}}{\langle VV \rangle_{\beta, \text{Eucl.}} \langle WW \rangle_{\beta, \text{Eucl.}}} = 1 + \langle \mathcal{B}_{\Delta_W}^{(1)}(1, 2) \mathcal{B}_{\Delta_V}^{(1)}(3, 4) \rangle_{\beta} + \dots$$

OTOC: analytically continue to real time, with Euclidean separations held fixed

—> Get exponentially growing term if crossing branch cut of log

$$\frac{\langle W(t,\sigma)[V(0,0),W(t,\sigma)]V(0,0)\rangle_{\beta}}{\langle VV\rangle_{\beta}\langle WW\rangle_{\beta}} \sim \frac{1}{c} e^{\frac{2\pi}{\beta}(t-|\sigma|)}$$

[Shenker-Stanford '13][Roberts-Stanford '14][Maldacena-Shenker-Stanford '15]

Reparametrization modes in d=2h

Quadratic action

 Similar to d=2, stress tensor correlators are singular in d=2h. In particular:

$$\partial_{\mu}\langle T^{\mu\nu}(x)T^{\rho\sigma}(y)\rangle_{\text{conn.}} \propto C_T \left\{ \partial^{\nu}\partial^{\rho}\partial^{\sigma} - \frac{d-1}{d} \eta^{\nu(\rho}\partial^{\sigma)} \Box - \frac{1}{d^2} \eta^{\rho\sigma}\partial^{\nu} \Box \right\} \Box^{\frac{d-2}{2}} \delta^{(d)}(x-y)$$

=> quadratic action for reparametrization $x^{\mu} \rightarrow x^{\mu} + \epsilon^{\mu}$

$$W_2[\epsilon] = -\frac{1}{2} \int d^d x \, d^d y \, \partial_{\mu} \epsilon_{\nu}(x) \, \partial_{\rho} \epsilon_{\sigma}(y) \, \langle T^{\mu\nu}(x) T^{\rho\sigma}(y) \rangle_{\text{conn.}}$$

Quadratic action

 Similar to d=2, stress tensor correlators are singular in d=2h. In particular:

$$\partial_{\mu}\langle T^{\mu\nu}(x)T^{\rho\sigma}(y)\rangle_{\text{conn.}} \propto C_T \left\{ \partial^{\nu}\partial^{\rho}\partial^{\sigma} - \frac{d-1}{d} \eta^{\nu(\rho}\partial^{\sigma)} \Box - \frac{1}{d^2} \eta^{\rho\sigma}\partial^{\nu} \Box \right\} \Box^{\frac{d-2}{2}} \delta^{(d)}(x-y)$$

=> quadratic action for reparametrization $x^{\mu} \rightarrow x^{\mu} + \epsilon^{\mu}$

$$W_2[\epsilon] = -\frac{1}{2} \int d^d x \, d^d y \, \partial_{\mu} \epsilon_{\nu}(x) \, \partial_{\rho} \epsilon_{\sigma}(y) \, \langle T^{\mu\nu}(x) T^{\rho\sigma}(y) \rangle_{\text{conn.}}$$

$$\langle \epsilon^{\mu}(x)\epsilon^{\nu}(0)\rangle = \frac{1}{C_T} \left(\eta^{\mu\nu} - 2\frac{x^{\mu}x^{\nu}}{x^2} \right) x^2 \log(\mu^2 x^2)$$

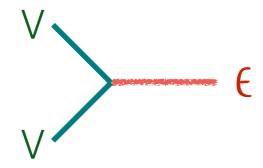
$$\langle \epsilon^{\mu}(x)\epsilon^{\nu}(0)\rangle = \frac{1}{C_T} \left(\eta^{\mu\nu} - 2\frac{x^{\mu}x^{\nu}}{x^2}\right) x^2 \log(\mu^2 x^2)$$

- μ^2 is a scale needed in order to write sensible expression. Related to *conformal anomaly*.
- For example, recall: $\langle T_{\mu\nu}(x)T_{\rho\sigma}(0)\rangle \sim C_T \mathcal{D}^{(4)}_{\mu\nu\rho\sigma} \frac{1}{(x^2)^{d-2}}$
 - $(x^2)^{-d+2}$ is too singular
 - Regularization introduces a scale

$$\langle \epsilon^{\mu}(x)\epsilon^{\nu}(0)\rangle = \frac{1}{C_T} \left(\eta^{\mu\nu} - 2\frac{x^{\mu}x^{\nu}}{x^2}\right) x^2 \log(\mu^2 x^2)$$

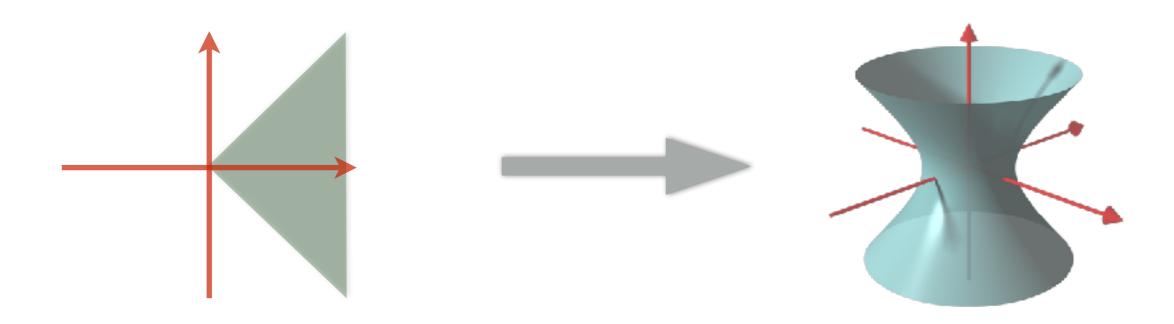
 Similarly, bilinear couplings are just reparametrized two-point functions:

$$\mathcal{B}_{\epsilon,V}^{(1)}(x,y) = \Delta_V \left\{ \frac{1}{d} \left(\partial_{\mu} \epsilon^{\mu}(x) + \partial_{\mu} \epsilon^{\mu}(y) \right) - 2 \frac{(\epsilon(x) - \epsilon(y))^{\mu} (x - y)_{\mu}}{(x - y)^2} \right\}$$



Application: Rindler OTOCs

- Could again use this to study OTOCs
- In d>2: Rindler wedge is conformal to $\mathbb{H}^{d-1} \times \mathbb{R}$



 Can study thermal physics on hyperbolic space via conformal transformation

- Stress tensor contribution to thermal 4pt function on \mathbb{H}^{d-1} from a single ϵ^{μ} exchange: $\langle \mathcal{B}_{V}^{(1)}(x_{1},x_{2})\mathcal{B}_{W}^{(1)}(x_{3},x_{4})\rangle$
- Analytic continuation to second sheet gives OTOC

- Stress tensor contribution to thermal 4pt function on \mathbb{H}^{d-1} from a single ϵ^{μ} exchange: $\langle \mathcal{B}_{V}^{(1)}(x_{1},x_{2})\mathcal{B}_{W}^{(1)}(x_{3},x_{4})\rangle$
- Analytic continuation to second sheet gives OTOC
- Result:

$$\langle V(t, \mathbf{d})W(0, 0)V(t, \mathbf{d})W(0, 0)\rangle \sim \langle VV\rangle\langle WW\rangle \times \left[1 + \# e^{\lambda_L t + \mathbf{d}/v_B}\right]$$
$$\lambda_L = \frac{2\pi}{\beta}, \quad v_B = \frac{1}{d-1}$$

(agrees with [Perlmutter '16])

Remarks on EFT of chaos

Pole skipping

Pole skipping

- Due to *relation between chaos and stress tensor*, one can already see some chaos characteristics in $\langle TT \rangle$
 - $\langle T^{00}(\omega,k)T^{00}(-\omega,-k)\rangle$ has poles and zeros
 - Poles are continuation of hydro diffusion pole $\omega + iD(\omega, k)k^2 = 0$
 - Zeros occur out of hydro regime, when $\omega \sim T$
 - Observation: in complex frequency space poles and zeros collide *the pole is "skipped"* at the Lyapunov values:

$$(\omega, k)_{\text{skip}} = (i\lambda_L, iv_B)$$

$$(\omega, k)_{\text{skip}} = (i\lambda_L, iv_B)$$

In CFT:

• E.g. d=2 CFT: $\langle T(\omega,k)T(-\omega,-k)\rangle \propto c \, \frac{\omega(\omega^2+1)}{\omega-k}$

$$(\omega, k)_{\text{skip}} = (i\lambda_L, iv_B)$$

In CFT:

• E.g. d=2 CFT:
$$\langle T(\omega,k)T(-\omega,-k)\rangle \propto c \frac{\omega(\omega^2+1)}{\omega-k}$$

More generally:

• Quadratic action: $W_2[\epsilon] = \iint d^d \xi \, d^d \xi' \, \partial_\mu \epsilon_\nu \, \partial_\rho \epsilon_\sigma \, \langle T^{\mu\nu}(\xi) T^{\rho\sigma}(\xi') \rangle$

=> roughly:
$$\langle \epsilon \epsilon \rangle \sim \frac{1}{\partial \partial \langle TT \rangle_{\text{sing.}}}$$

• $\langle \epsilon \epsilon \rangle$ grows exponentially <-> $\partial \partial \langle TT \rangle_{\rm sing.} \sim (\omega - i\lambda) \times f(\omega, k)$

• E.g. d=2 CFT: $\langle T(\omega,k)T(-\omega,-k)\rangle \propto c \frac{\omega(\omega^2+1)}{\omega-k}$

• In d>2 CFT:

$$\langle T^{00}(\omega_E, k) T^{00}(-\omega_E, -k) \rangle$$

$$\propto C_T \left(k^2 + \left(\frac{d}{2} \right)^2 \right) \left(k^2 + \left(\frac{d-2}{2} \right)^2 \right) \left. \frac{\Gamma\left[\frac{1}{2} \left(\omega_E \pm ik + \frac{d-2}{2} \right) \right]}{\Gamma\left[\frac{1}{2} \left(\omega_E \pm ik - \frac{d-6}{2} \right) \right]} \right|_{\text{reg.}}$$

• E.g. d=2 CFT:
$$\langle T(\omega,k)T(-\omega,-k)\rangle \propto c \frac{\omega(\omega^2+1)}{\omega-k}$$

• In d>2 CFT:

$$\langle T^{00}(\omega_E, k) T^{00}(-\omega_E, -k) \rangle$$

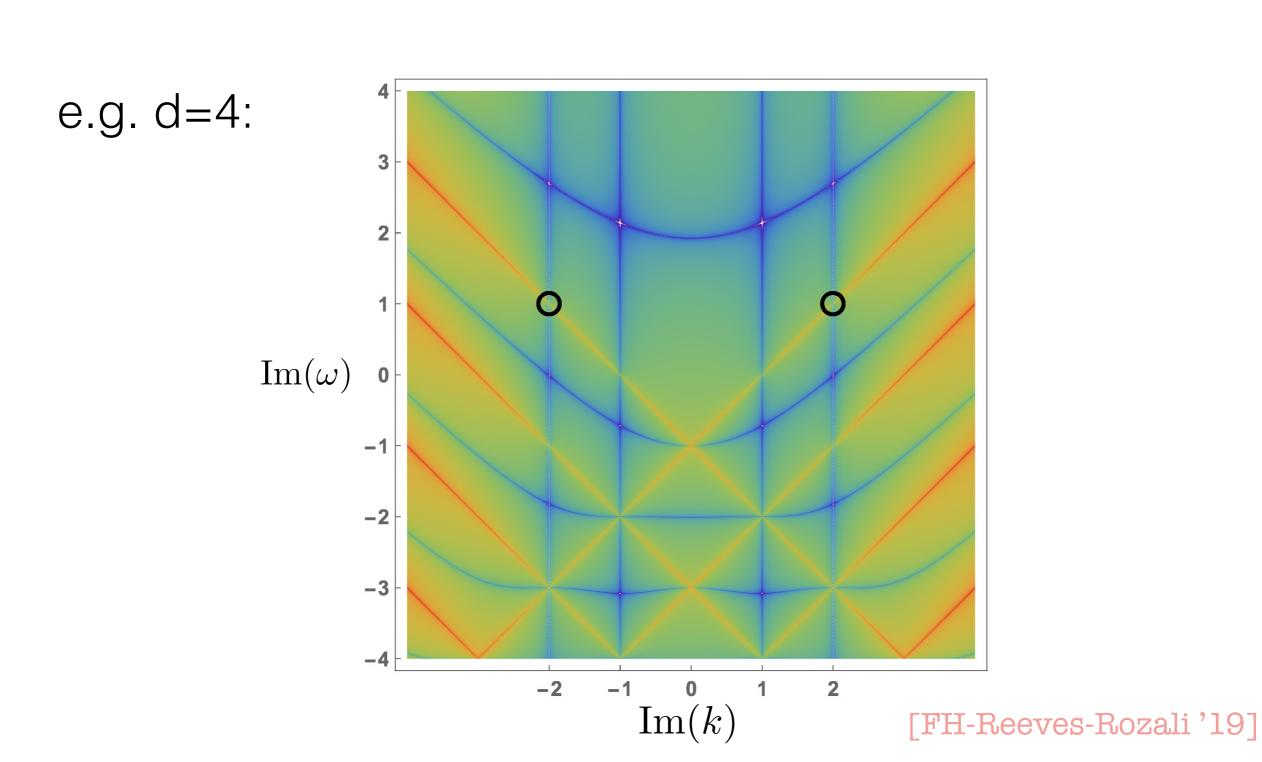
$$\propto C_T \left(k^2 + \left(\frac{d}{2} \right)^2 \right) \left(k^2 + \left(\frac{d-2}{2} \right)^2 \right) \frac{\Gamma\left[\frac{1}{2} \left(\omega_E \pm ik + \frac{d-2}{2} \right) \right]}{\Gamma\left[\frac{1}{2} \left(\omega_E \pm ik - \frac{d-6}{2} \right) \right]} \Big|_{\text{reg.}}$$

zeros (special to stress tensor)

poles (and more zeros)

$$\langle T^{00}(\omega_E, k) T^{00}(-\omega_E, -k) \rangle$$

$$\propto C_T \left(k^2 + \left(\frac{d}{2} \right)^2 \right) \left(k^2 + \left(\frac{d-2}{2} \right)^2 \right) \left. \frac{\Gamma\left[\frac{1}{2} \left(\omega_E \pm ik + \frac{d-2}{2} \right) \right]}{\Gamma\left[\frac{1}{2} \left(\omega_E \pm ik - \frac{d-6}{2} \right) \right]} \right|_{\text{reg.}}$$



Sub-maximal chaos (w.i.p.)

- Challenge: effective field theory for chaos with $\lambda_L < \frac{2\pi}{\beta}$
- Stress tensor physics (identity block) => $\lambda_L = \frac{2\pi}{\beta}$
- Sub-maximal chaos due to other exchanges
 - Lowest twist Regge trajectory gives collective correction: $\delta \lambda_L \sim j(0) 2$ ("pomeron")

[Costa-Goncalves-Penedones '12]

[Kravchuk-Simmons—Duffin '18]

• In bulk: stringy corrections $\delta \lambda_L \sim \frac{\ell_{string}^2}{\ell_{AdS}^2}$

Connection with conformal blocks

Consider OPE in (Euclidean) CFT:

$$V(x)V(y) = \frac{1}{(x-y)^{2\Delta_V}} \sum_{\mathcal{O}} C_{VV\mathcal{O}} |x-y|^{\Delta} \left[\mathcal{O}(y) + \text{conformal descendants} \right]$$

Consider OPE in (Euclidean) CFT:

$$V(x)V(y) = \frac{1}{(x-y)^{2\Delta_V}} \sum_{\mathcal{O}} C_{VV\mathcal{O}} |x-y|^{\Delta} \left[\mathcal{O}(y) + \text{conformal descendants} \right]$$

"OPE block"

Consider OPE in (Euclidean) CFT:

$$V(x)V(y) = \frac{1}{(x-y)^{2\Delta_V}} \sum_{\mathcal{O}} C_{VV\mathcal{O}} |x-y|^{\Delta} \left[\mathcal{O}(y) + \text{conformal descendants} \right]$$

"OPE block"

Conformal block decomposition of 4-point function:

$$\langle V(x_1)V(x_2)W(x_3)W(x_4)\rangle = \frac{1}{x_{12}^{\Delta_V}x_{34}^{\Delta_W}} \sum_{\mathcal{O}} C_{VV\mathcal{O}} C_{WW\mathcal{O}} G_{\Delta}^{(\ell)}(u,v)$$

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \ v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$

Consider OPE in (Euclidean) CFT:

$$V(x)V(y) = \frac{1}{(x-y)^{2\Delta_V}} \sum_{\mathcal{O}} C_{VV\mathcal{O}} |x-y|^{\Delta} \left[\mathcal{O}(y) + \text{conformal descendants} \right]$$

"OPE block"

Conformal block decomposition of 4-point function:

$$\langle V(x_1)V(x_2)W(x_3)W(x_4)\rangle = \frac{1}{x_{12}^{\Delta_V}x_{34}^{\Delta_W}} \sum_{\mathcal{O}} C_{VV\mathcal{O}} C_{WW\mathcal{O}} G_{\Delta}^{(\ell)}(u,v)$$
"conformal block"
$$u = \frac{x_{12}^2x_{34}^2}{x_{13}^2x_{24}^2}, v = \frac{x_{14}^2x_{23}^2}{x_{13}^2x_{24}^2}$$

 $V \longrightarrow O \longrightarrow W$ V

 Can find (global) conformal blocks by solving Casimir eq.:

$$\mathcal{C}[SO(2,d)] \ G_{\Delta}^{(\ell)} = \left[\ell(\ell+d-2) - \Delta(d-\Delta)\right] G_{\Delta}^{(\ell)}$$

 Can find (global) conformal blocks by solving Casimir eq.:

$$\mathcal{C}[SO(2,d)] \ G_{\Delta}^{(\ell)} = \left[\ell(\ell+d-2) - \Delta(d-\Delta)\right] G_{\Delta}^{(\ell)}$$

Casimir has two solutions with same eigenvalue:

$$G_{\Delta}^{(\ell)}(u,v)$$

$$G_{\widetilde{\Delta}=d-\Delta}^{(\ell)}(u,v)$$

"physical" block

"shadow" block

Distinguish them by short distance behavior:

$$G_{\Delta}^{(\ell)} \overset{u \to 0, \, v \to 1}{\sim} u^{\frac{\Delta - \ell}{2}} (1-v)^{\ell} + \dots \qquad G_{d-\Delta}^{(\ell)} \overset{u \to 0, \, v \to 1}{\sim} u^{\frac{d-\Delta - \ell}{2}} (1-v)^{\ell} + \dots$$

Shadow operators

• Shadow block can be thought of as the conformal block associated with a *shadow operator* $\widetilde{\mathcal{O}}$

$$\widetilde{\mathcal{O}}(x) = \int d^d \xi \, \langle \widetilde{\mathcal{O}}(x) \widetilde{\mathcal{O}}(\xi) \rangle \, \mathcal{O}(\xi) \qquad (\widetilde{\Delta} = d - \Delta)$$

Shadow operators

• Shadow block can be thought of as the conformal block associated with a *shadow operator* $\widetilde{\mathcal{O}}$

$$\widetilde{\mathcal{O}}(x) = \int d^d \xi \, \langle \widetilde{\mathcal{O}}(x) \widetilde{\mathcal{O}}(\xi) \rangle \, \mathcal{O}(\xi) \qquad (\widetilde{\Delta} = d - \Delta)$$

Define projector onto conformal multiplet of O:

$$|\mathcal{O}| = \int d^d \xi \ \mathcal{O}(\xi) |0\rangle \langle 0| \widetilde{\mathcal{O}}(\xi)$$

$$G_{\Delta}^{(\ell)} \stackrel{?}{=} \langle V(x_1)V(x_2)|\mathcal{O}_{\Delta,\ell}|W(x_3)W(x_4)\rangle$$

Define projector onto conformal multiplet of O:

$$|\mathcal{O}| = \int d^d \xi \ \mathcal{O}(\xi) |0\rangle \langle 0| \widetilde{\mathcal{O}}(\xi)$$

Can understand OPE block from this:

$$V(x)V(y)|0\rangle|_{\mathcal{O}+\text{global desc.}} = |\mathcal{O}|V(x)V(y)|0\rangle$$

$$= \int d^d\xi \, \langle V(x)V(y)\widetilde{\mathcal{O}}(\xi)\rangle \, \mathcal{O}(\xi)|0\rangle$$

$$\equiv \mathfrak{B}_{\mathcal{O}}(x,y)|0\rangle$$

$$G_{\Delta}^{(\ell)} \stackrel{?}{=} \langle V(x_1)V(x_2)|\mathcal{O}_{\Delta,\ell}|W(x_3)W(x_4)\rangle$$

$$G_{\Delta}^{(\ell)} \stackrel{?}{=} \langle V(x_1)V(x_2)|\mathcal{O}_{\Delta,\ell}|W(x_3)W(x_4)\rangle$$

$$G_{\Delta}^{(\ell)} \stackrel{?}{=} \langle V(x_1)V(x_2)|\mathcal{O}_{\Delta,\ell}|W(x_3)W(x_4)\rangle$$

$$F_{\Delta}^{(\ell)} \equiv G_{\Delta}^{(\ell)} + c_{\Delta,\ell} \ G_{\widetilde{\Delta}}^{(\ell)} = \langle V(x_1)V(x_2)|\mathcal{O}_{\Delta,\ell}|W(x_3)W(x_4)\rangle$$

"conformal partial wave"

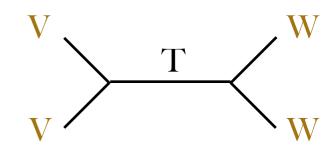
$$F_{\Delta}^{(\ell)} \equiv G_{\Delta}^{(\ell)} + c_{\Delta,\ell} \ G_{\widetilde{\Delta}}^{(\ell)} = \langle V(x_1)V(x_2)|\mathcal{O}_{\Delta,\ell}|W(x_3)W(x_4)\rangle$$

"conformal partial wave"

 The shadow block can be projected out by imposing correct short distance behavior

Stress tensor block

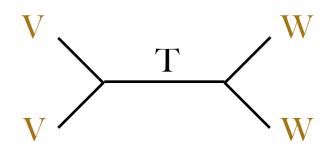
 Interesting and universal physics is encoded by the stress tensor block



- Encodes graviton exchanges in AdS/CFT
 - Probe pure gravity sector (gravitational scattering, bulk locality,...)
 - Important example: V, W = twist operators

Stress tensor block

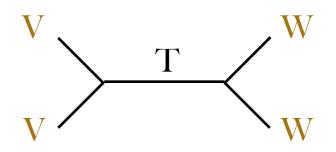
 Interesting and universal physics is encoded by the stress tensor block



Special feature of stress tensor shadow:

Stress tensor block

 Interesting and universal physics is encoded by the stress tensor block



Special feature of stress tensor shadow:

$$\widetilde{T}_{\mu\nu}(x) \equiv \mathbb{P}_{\mu\nu}^{\,\rho\sigma} \, \partial_{\rho} \mathcal{E}_{\sigma}(x) \,, \qquad \mathcal{E}_{\sigma}(x) = \int d^d \xi \, K^{\alpha\beta}{}_{\sigma}(x-\xi) \, T_{\alpha\beta}(\xi)$$
 symmetric-traceless projector

• Operator \mathcal{E}_{μ} inherits 2-point function from <TT>:

$$\langle \mathcal{E}^{\mu}(x)\mathcal{E}^{\nu}(0)\rangle \propto \left(\eta^{\mu\nu} - 2\frac{x^{\mu}x^{\nu}}{x^2}\right) x^2 \log\left(\mu^2 x^2\right)$$

• Two-point function of \mathcal{E}_{μ} follows from conf. symm.:

$$\langle \mathcal{E}^{\mu}(x)\mathcal{E}^{\nu}(0)\rangle \propto \left(\eta^{\mu\nu} - 2\frac{x^{\mu}x^{\nu}}{x^2}\right) x^2 \log\left(\mu^2 x^2\right)$$

• This is exactly the same as the two-point function of reparametrization fields, $\langle \epsilon^{\mu} \epsilon^{\nu} \rangle$

• Two-point function of \mathcal{E}_{μ} follows from conf. symm.:

$$\langle \mathcal{E}^{\mu}(x)\mathcal{E}^{\nu}(0)\rangle \propto \left(\eta^{\mu\nu} - 2\frac{x^{\mu}x^{\nu}}{x^2}\right) x^2 \log\left(\mu^2 x^2\right)$$

• This is exactly the same as the two-point function of reparametrization fields, $\langle \epsilon^\mu \epsilon^\nu \rangle$

Calculations of stress tensor global blocks can be recast as reparametrization mode diagrams.

 EFT of the global stress tensor block (in thermal state: becomes EFT of maximal chaos) Calculations of stress tensor global blocks can be recast 1-to-1 as reparametrization mode exchanges.

Bilocal operators:

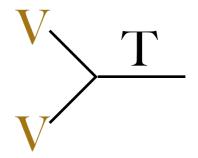
$$\mathcal{B}_{T}(x,y) = \int d^{d}\xi \frac{\langle V(x)V(y)\tilde{T}(\xi)\rangle}{\langle V(x)V(y)\rangle} T(\xi)$$

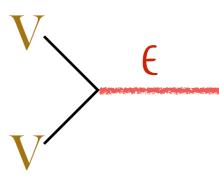
$$= \int d^{d}\xi \frac{\langle V(x)V(y)\tilde{T}(\xi)\rangle}{\langle V(x)V(y)\rangle} T(\xi)$$

$$\Delta_{V} \left[\frac{1}{d} \left(\partial \epsilon(x) + \partial \epsilon(y) \right) - 2 \frac{(\epsilon(x) - \epsilon(y))^{\mu}(x - y)_{\mu}}{(x - y)^{2}} \right]$$

"stress tensor OPE block"

"reparam. mode vertex"





• Writing $\widetilde{T}_{\mu\nu} = \mathbb{P}^{\rho\sigma}_{\mu\nu} \, \partial_{\rho} \epsilon_{\sigma}$ and using conformal Ward identity, can show equivalence explicitly

Calculations of stress tensor global blocks can be recast 1-to-1 as reparametrization mode exchanges.

Bilocal operators:

$$\mathcal{B}_{T}(x,y) = \mathcal{B}_{\Delta_{V}}^{(1)}(x,y)$$

$$= \int d^{d}\xi \frac{\langle V(x)V(y)\tilde{T}(\xi)\rangle}{\langle V(x)V(y)\rangle} T(\xi)$$

$$\Delta_{V} \left[\frac{1}{d} \left(\partial \epsilon(x) + \partial \epsilon(y) \right) - 2 \frac{(\epsilon(x) - \epsilon(y))^{\mu}(x - y)_{\mu}}{(x - y)^{2}} \right]$$

"stress tensor OPE block"

"reparam. mode vertex"

- Ihs: have to compute *conformal integrals*
- rhs: EFT-type exchanges of ϵ^{μ}

For example, stress tensor 4-point (global) block:

$$F_{\Delta=d}^{(\ell=2)} = \left\langle \mathcal{B}_{\Delta_V}^{(1)}(x_1, x_2) \mathcal{B}_{\Delta_W}^{(1)}(x_3, x_4) \right\rangle \propto \left(\frac{4}{d} + \frac{1 - v}{u} \log v \right)$$

—> Matches the known CPW associated with stress tensor exchanges in d=2,4,6.

[Dolan-Osborn '11] [FH-Reeves-Rozali '19]

Note: calculation independent of d

• In particular, consider *d=2*:

$$\begin{split} \langle \epsilon(z) \epsilon(0) \rangle &= \frac{6}{c} \, z^2 \, \left[\log z + \log \bar{z} \right] \\ \langle \mathcal{B}_{\Delta_V}^{(1)} \, \mathcal{B}_{\Delta_W}^{(1)} \, \rangle &= \frac{2 h_V h_W}{c} \, \left[z^2 \, {}_2F_1(2,2,4,z) + 12 \, \frac{\bar{z}}{z} \, {}_2F_1(-1,-1,-2,z) \, {}_2F_1(1,1,2,\bar{z}) \right] \\ & \text{"global block"} \end{split}$$

- Can do *monodromy projection* at the level of $\langle \epsilon \epsilon \rangle$:
 - Simply drop the term $\sim z^2 \log \bar{z}$
 - Useful in calculations
- Q: can one do this in d>2?

Some explicit calculations

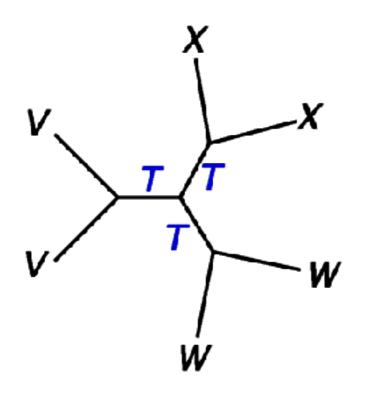
Six-point identity block in d=2

- Higher-point conformal blocks relevant for:
 - Entanglement entropy for multiple intervals (mutual information, ...)
 - Eigenstate thermalization
 - Chaos (higher-point OTOCs)
 - Generalized bootstrap?

• . . .

Six-point identity block in d=2

Two types of OPE channels:



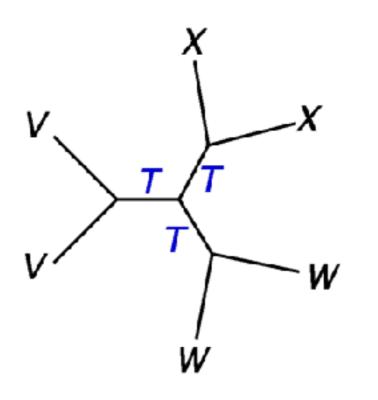
V T X X T W W

- "star channel"
- Pure gravity sector
- Universal (in d=2)

- "comb channel"
- Understood quite generally in terms of hypergeometric series/integrals [Rosenhaus '18]

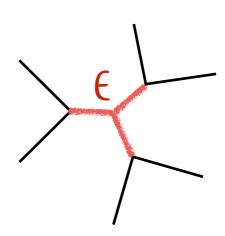
Six-point identity block in d=2

Two types of OPE channels:



- "star channel"
- Pure gravity sector
- Universal (in d=2)

 Corresponds 1-to-1 to a cubic self-interaction of reparametrization:



$$\langle \mathcal{B}_V^{(1)}(1,2)\mathcal{B}_X^{(1)}(3,4)\mathcal{B}_W^{(1)}(5,6)\rangle \sim \langle \epsilon \epsilon \epsilon \rangle$$

$$\langle \mathcal{B}_{V}^{(1)}(1,2)\mathcal{B}_{X}^{(1)}(3,4)\mathcal{B}_{W}^{(1)}(5,6)\rangle \sim \langle \epsilon\epsilon\epsilon \rangle$$

- Easy! No need to do any conformal integrals, nested hypergeometric sums etc.
- Just need $\langle \epsilon \epsilon \epsilon \rangle$
 - Follows by simple integration of identities like:

$$\langle \bar{\partial} \epsilon \, \bar{\partial} \epsilon \, \bar{\partial} \epsilon \rangle \propto \langle \widetilde{T} \widetilde{T} \widetilde{T} \rangle$$
 $\langle \partial^3 \epsilon \, \partial^3 \epsilon \, \partial^3 \epsilon \rangle \propto \langle TTT \rangle$

• *Monodromy projection:* only keep purely holomorphic part of $\langle \epsilon \epsilon \epsilon \rangle$

$$\langle \mathcal{B}_V^{(1)}(1,2)\mathcal{B}_X^{(1)}(3,4)\mathcal{B}_W^{(1)}(5,6)\rangle \sim \langle \epsilon \epsilon \epsilon \rangle$$

$$\langle \bar{\partial} \epsilon \, \bar{\partial} \epsilon \, \bar{\partial} \epsilon \rangle \propto \langle \widetilde{T} \widetilde{T} \widetilde{T} \rangle$$
 $\langle \partial^3 \epsilon \, \partial^3 \epsilon \, \partial^3 \epsilon \rangle \propto \langle TTT \rangle$

• *Monodromy projection:* only keep purely holomorphic part of $\langle \epsilon \epsilon \epsilon \rangle$

$$\langle \epsilon_1 \epsilon_2 \epsilon_3 \rangle_{phys.} \sim \frac{1}{c^2} z_{12} z_{23} z_{31} \left[\text{Li}_2 \left(\frac{z_{12}}{z_{13}} \right) - \text{Li}_2 \left(\frac{z_{23}}{z_{13}} \right) \right]$$



$$\langle \mathcal{B}_{V}^{(1)}(1,2)\mathcal{B}_{X}^{(1)}(3,4)\mathcal{B}_{W}^{(1)}(5,6)\rangle \sim \langle \epsilon\epsilon\epsilon \rangle$$

• Result:
$$\begin{cases} G_{V,V;X,X;W,W}^{(T,\,\mathrm{star})} = \left\langle \mathcal{B}_V^{(1)}(1,2)\,\mathcal{B}_X^{(1)}(3,4)\,\mathcal{B}_W^{(1)}(5,6) \right\rangle \\ \sim \frac{h_V h_X h_W}{c^2} \left[\mathcal{I}\left(z,u,v\right) + \mathcal{I}\left(z,v,u\right) + \mathcal{I}\left(\frac{1}{z},\frac{u}{z},\frac{v}{z}\right) + \mathcal{I}\left(\frac{1}{z},\frac{v}{z},\frac{u}{z}\right) \right] \end{cases}$$

$$\mathcal{I}(z, u, v) \equiv 1 + \frac{1}{(u - v)(1 - z)} \left[u \left(\frac{u(v - vz + z - u)}{1 - u} + 2(z - v) \right) \log u - (1 - u) \left(\frac{(1 - u)(zv + u)}{u} + 2(z - v) \right) \log(1 - u) - 2(uv - z) \left(\text{Li}_2(u) - \text{Li}_2(1 - u) \right) \right]$$

$$z = \frac{z_{13}z_{24}}{z_{23}z_{14}}, \qquad u = \frac{z_{13}z_{25}}{z_{23}z_{15}}, \qquad v = \frac{z_{13}z_{26}}{z_{23}z_{16}}$$



$$\langle \mathcal{B}_{V}^{(1)}(1,2)\mathcal{B}_{X}^{(1)}(3,4)\mathcal{B}_{W}^{(1)}(5,6)\rangle \sim \langle \epsilon\epsilon\epsilon \rangle$$

$$G_{V,V;X,X;W,W}^{(T,\text{star})} = \left\langle \mathcal{B}_V^{(1)}(1,2) \, \mathcal{B}_X^{(1)}(3,4) \, \mathcal{B}_W^{(1)}(5,6) \right\rangle$$

$$\sim \frac{h_V h_X h_W}{c^2} \left[\mathcal{I}(z,u,v) + \mathcal{I}(z,v,u) + \mathcal{I}\left(\frac{1}{z},\frac{u}{z},\frac{v}{z}\right) + \mathcal{I}\left(\frac{1}{z},\frac{v}{z},\frac{u}{z}\right) \right]$$

- Solves 6-point Casimir equations & boundary conditions
- Interesting transcendentality/branch cut structure
- Questions:
 - 6-point OTOCs? —> self interactions in the chaos EFT
 - HHLLLL block? —> ETH, entanglement/mutual information in excited states, ...

Summary

- Single reparametrization mode exchanges are in 1-to-1 correspondence with *global stress tensor blocks*
 - *Easy calculations:* never need to deal with conformal integrals, hypergeometric sums, Casimir PDEs etc.
 - Monodromy projection can be done from the outset (at least in d=2)

Q: What about Virasoro blocks?

Summary

- Single reparametrization mode exchanges are in 1-to-1 correspondence with *global stress tensor blocks*
 - *Easy calculations:* never need to deal with conformal integrals, hypergeometric sums, Casimir PDEs etc.
 - Monodromy projection can be done from the outset (at least in d=2)

Q: What about Virasoro blocks?

Virasoro blocks in d=2

Virasoro blocks in d=2

$$V(z_1)V(z_2)|_T \sim \frac{C_{VV1}}{|z_{12}|^{2(\Delta_V-1)}} [\mathbf{1} + \text{Virasoro descendants}]$$

- Virasoro identity block in AdS/CFT: gravitational scattering/graviton exchanges
- Proposal for generalization of shadow operator approach:

Virasoro identity blocks are computed by higher order exchanges of reparametrization fields.

$$z \to f(z) = z + \epsilon(z, \bar{z}) + \dots$$
: $\mathcal{B}_h(z_1, z_2) = \left(\frac{\partial f(z_1)}{\partial f(z_2)} \frac{\partial f(z_2)}{(z_1 - z_2)^2}\right)^n$

Example: light-light block

Example: light-light block

• [Cotler-Jensen'18] already used ϵ^{μ} to reproduce the "eikonalization" of the *LLLL block*

$$\langle V(\infty)V(1)W(z)W(0)\rangle$$
 $\alpha \equiv \frac{\Delta_V \Delta_W}{c} \sim \mathcal{O}(1)$

Ladder diagrams dominate in EFT

exponentiation!

Example: heavy-light block

• HHLL Virasoro block in d=2: $\langle H(\infty)H(0)L(1)L(z,\bar{z})\rangle$

$$\mathcal{V}_{0} = \alpha^{\Delta_{L}} z^{-\frac{1-\alpha}{2}\Delta_{L}} \left(\frac{1-z}{1-z^{\alpha}}\right)^{\Delta_{L}} \qquad \alpha \equiv \sqrt{1-\mu}, \quad \mu \equiv \frac{12\Delta_{H}}{c}$$

$$(\Delta_{H} \sim \mathcal{O}(c), \Delta_{L} \sim \mathcal{O}(1))$$

[Fitzpatrick-Kaplan-Walters'14]

Example: heavy-light block

• HHLL Virasoro block in d=2: $\langle H(\infty)H(0)L(1)L(z,\bar{z})\rangle$

$$\mathcal{V}_{0} = \alpha^{\Delta_{L}} z^{-\frac{1-\alpha}{2}\Delta_{L}} \left(\frac{1-z}{1-z^{\alpha}}\right)^{\Delta_{L}} \qquad \alpha \equiv \sqrt{1-\mu}, \quad \mu \equiv \frac{12\Delta_{H}}{c}$$

$$(\Delta_{H} \sim \mathcal{O}(c), \ \Delta_{L} \sim \mathcal{O}(1))$$

[Fitzpatrick-Kaplan-Walters'14]

$$\mathcal{V}_{0} = 1 + \mu \Delta_{L} \left[\frac{z+1}{4(z-1)} \log z - \frac{1}{2} \right] + \frac{\mu^{2}}{2} \left[\Delta_{L}^{2} \left(\frac{z+1}{4(z-1)} \log z - \frac{1}{2} \right)^{2} + \frac{\Delta_{L}}{8} \left(\cdots \right) \right] + \frac{\mu^{3}}{6} \left[\cdots \right] + \cdots$$

$$\mathcal{V}_{0} = 1 + \mu \Delta_{L} \left[\frac{z+1}{4(z-1)} \log z - \frac{1}{2} \right] + \frac{\mu^{2}}{2} \left[\Delta_{L}^{2} \left(\frac{z+1}{4(z-1)} \log z - \frac{1}{2} \right)^{2} + \frac{\Delta_{L}}{8} \left(\cdots \right) \right] + \frac{\mu^{3}}{6} \left[\cdots \right] + \cdots$$

- Reparametrization mode diagrammatics: systematic way to construct HHLL block order by order
- 1/c corrections computed by loops [Cotler-Jensen '18]

$$\mathcal{V}_{0} = 1 + \mu \Delta_{L} \left[\frac{z+1}{4(z-1)} \log z - \frac{1}{2} \right] + \frac{\mu^{2}}{2} \left[\Delta_{L}^{2} \left(\frac{z+1}{4(z-1)} \log z - \frac{1}{2} \right)^{2} + \frac{\Delta_{L}}{8} \left(\cdots \right) \right] + \frac{\mu^{3}}{6} \left[\cdots \right] + \cdots$$

- Reparametrization mode diagrammatics: systematic way to construct HHLL block order by order
- 1/c corrections computed by loops [Cotler-Jensen '18]
- Q: Do multi-T contributions to HHLL exponentiate in d>2?

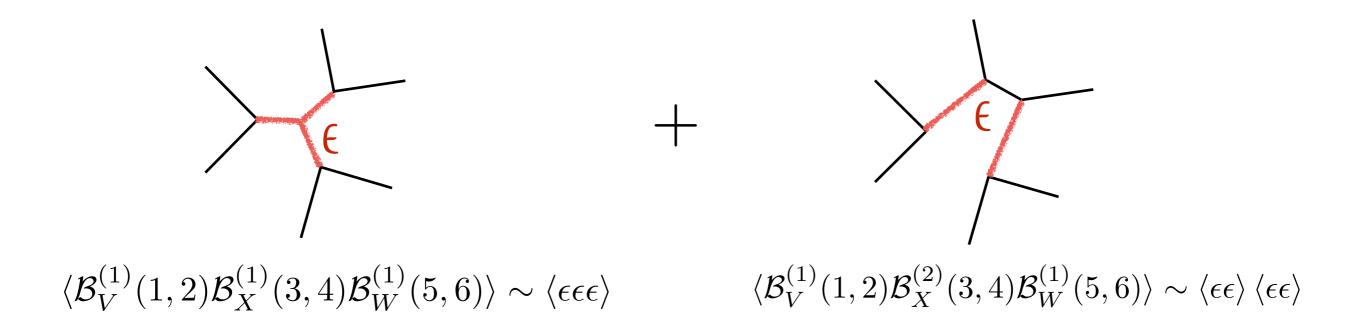
[Fitzpatrick-Huang(-Li) '19] [Kulaxizi et al. '19] ...

Reparametrization mode approach might be useful

Six-point Virasoro identity block

Six-point Virasoro identity block

- Computed by *all connected diagrams* in $\langle \mathcal{B}_V \mathcal{B}_X \mathcal{B}_W \rangle$
- Leading order at large c:



$$V_{\rm id.}^{(6)} = G^{(6, \, \text{global})} + G^{(6, \, \text{extra})} + \mathcal{O}(1/c)$$

Six-point Virasoro identity block

$$V_{\rm id.}^{(6)} = G^{(6, \, \text{global})} + G^{(6, \, \text{extra})} + \mathcal{O}(1/c)$$

- Surprising: leading term ≠ global block
- $\mathcal{V}_{\mathrm{id.}}^{(6)}$ exponentiates when $\Delta_V, \Delta_X, \Delta_Y \sim c^{2/3}$
- "Extra" term turns out to be the dominant one in Regge limit

$$OTOC_{id}^{(6)} \approx OTOC^{(6, extra)} \sim e^{\frac{2\pi}{\beta}(t-2t_*)}$$

Conclusion

Summary

- Can write down systematic EFT for reparametrization modes in CFT for d=2h perturbatively in 1/c
- Bilinear operators correspond to "OPE blocks"

$$\sum_{\mathbf{V}}^{\mathbf{V}} = \sum_{\mathbf{V}}^{\mathbf{V}} \mathbf{\epsilon}$$

- Reparametrization mode closely related to shadow of T
 - Explains why and how this theory computes conformal blocks, OTOCs etc.
 - 6-point block: exploit advantages to get new results
- Applications to thermal physics (OTOCs, ETH, ...)

Outlook

- Compute more complicated blocks
- Hydrodynamic origin of quantum chaos?
 - Is there an EFT for *non-maximal chaos?*
- Non-linear action similar to Schwarzian (d=1) and Alekseev-Shatashvili (d=2) in d>2?
- Understand monodromy projection at the level of the reparametrization mode theory in d>2
- Odd dimensions?