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The hydrodynamic gradient expansion

Hydrodynamics: generic near-equilibrium eff. field theory for long
wavelength fluctuations

microscopic theory

↓ L� `mfp

macroscopic fluid variables: uµ(x), T (x), µ(x) (u2=−1)

background sources: gµν(x), Aµ(x)

↓

Constitutive relations: Dynamics:

Tµν = Tµν(0) + Tµν(1) + . . .

Jα = Jα(0) + Jα(1) + . . .

∇νTµν ' FµνJν + T⊥νH

∇αJα ' 0J⊥H

E.g.: Tµν(0) = ε(T, µ)uµuν + p(T, µ) (gµν + uµuν) , Jα(0) = q(T, µ)uα

T⊥νH

J⊥H (cov. anomalies)
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The hydrodynamic gradient expansion

“Solving hydrodynamics” in this talk does not mean...
... to calculate transport coefficients (ε, p, . . .) for any

particular microscopic system
... to solve the fluid equations for {uµ(x), T (x), µ(x)}

It rather means: to provide all symmetry-allowed constitutive relations
order by order in ∇µ which are consistent with the

Second law constraint

∃ JµS = s(T, µ)uµ + JµS,(1) + . . . with ∇µJµS & 0 (on-shell)

I Gives quite non-trivial constraints on physically allowed
constitutive relations, e.g.:

F Neutral ideal fluid: ε+ p = s T
F Neutral 1st order: viscosities η, ζ ≥ 0
F Neutral 2nd order: 5 relations among 15

a-priori independent transport coefficients
F Anomaly induced transport completely fixed

Bhattacharyya ’12

Son-Surowka ’09

Jensen-Loganayagam-Yarom ’13

kkkkkk
...
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Plan

This talk: the structure of hydrodynamics

Understand constitutive relations allowed by Second Law:

. Classify hydrodynamic transport in a physically useful way

. Construct most general solution at all orders

Suggest a unifying framework for adiabatic transport:

. New gauge symmetry that explains the 2nd law constraint

Talk on Nov 20: the field theory behind hydrodynamics

Use hydrodynamics as a tractable starting point to learn basic lessons
about some important problems across physics:

. How to understand hydrodynamics as a Wilsonian field theorist?

. Ingredients: Schwinger-Keldysh, SUSY, topological σ-models, ...

. Black holes via AdS/CFT: dissipation, entropy, unitarity, ...
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◦ The hydrodynamic gradient expansion
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Disclaimer
From now on I will only discuss neutral fluids.
Adding an arbitrary number of abelian or non-abelian flavours is just a technical
task without new conceptual ideas, see [1502.00636].
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Off-shell entropy production and adiabaticity

Inequality constraint ∇µJµS & 0 is much more conveniently incorporated if
we don’t have to simplify it using equations of motion.

Use Lagrange multiplier βµ and consider off-shell statement:

∇µJµS + βµ

(
∇νTµν − Tµ⊥H

)
≡ ∆ ≥ 0

Natural Lagrange multiplier:

I βµ = 1
T u

µ (local thermal vector)

Task: solve for {JµS , Tµν} as functionals of {βµ, gµν}

. Ideally: find effective action which defines all solutions off-shell

Marginal case ∆ = 0: ’adiabaticity equation’

I Particularly rich structure! ⇒ focus on this first

Loganayagam ’11
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Aside: adiabaticity equation for free energy current

∇µJµS + βµ

(
∇νTµν − Tµ⊥H

)
= 0

Can trade entropy current JµS for free energy current Gµ:

−
Gµ

T
≡ JµS − (JµS )canonical with (JµS )canonical = −βνTµν

Grand-canonical version of adiabaticity equation:

−
[
∇µ

(
Gµ

T

)
−
G⊥
H

T

]
=

1

2
Tµν £β gµν

I Solve for {Gµ, Tµν} as functionals of {βµ, gµν}
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Classification of hydrodynamic transport
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Classification of hydrodynamic transport
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Anomaly induced transport (Class A)

−
[
∇σ

(
Gσ

T

)
−
G⊥
H

T

]
=

1

2
Tµν £β gµν + ∆

First of all: let’s get rid of anomalies G⊥
H

= −uνTν⊥H

I Can always split off from a solution {Gσ, Tµν} a particular solution
{(Gσ)A, (T

µν)A} that takes care of anomalies with (∆)A = 0:

−
[
∇σ
(

(Gσ)A
T

)
− G

⊥
H

T

]
= 1

2 (Tµν)A£β gµν

I Anomalous transport coefficients fixed in terms of anomaly polynomial
⇒ finite class

Loganayagam ’11

Jensen-Loganayagam-Yarom ’13
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Dissipative transport (Class D)

∆ ≡ −∇σ
(Gσ
T

)
− 1

2T
µν £β gµν ≥ 0

Now consider transport which does generically produce entropy (∆ > 0)

Such terms appear in three varieties:

1 Sign-definite terms (inequalities from 2nd law)
→ These only show up at leading order!

2 Sign-indefinite terms which are dominated by sign-definite terms
(no constraints from 2nd law)

3 Sign-indefinite terms which are dominant in derivative expansion
(forbidden by 2nd law)

Example: Tµν(1) = −ζ Θ (gµν + uµuν) (Θ ≡ ∇µuµ)

gives ∆ = ζ 1
T Θ2 ⇒ ζ ≥ 0 (type 1 )

⇒ At higher orders:
any Tµν(2) = γ [∂∂]µν s.t. ∆ = γΘ3

will be subdominant, hence unconstrained (type 2 )

Bhattacharyya ’11 ’13 ’14
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Hydrostatically forbidden terms (Class HF )

∆ ≡ −∇σ
(Gσ
T

)
− 1

2T
µν £β gµν ≥ 0

Type 3 : sign-indefinite terms at dominant order in ∂

I Need to be zero for consistency with 2nd law!
I Example: Ideal fluid

Tµν(0) = ε uµuν + p (gµν + uµuν) , JµS,(0) = s uµ

⇒ ∆ ' (Ts− ε− p)︸ ︷︷ ︸
=0 (!)

Θ

T
+

(
T
ds

dT
− dε

dT

)
︸ ︷︷ ︸

=0 (!)

(u∇)T

T

I A-priori: 3 parameters
I But second law enforces: 2 relations

This is Class HF : combinations forbidden by 2nd law
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Dissipative transport (Class D)

∆ ≡ −∇σ
(Gσ
T

)
− 1

2T
µν £β gµν ≥ 0

There’s a simple way to construct Class D explicitly:

(Tµν)D = −
(
N (µν)(αβ) +N (αβ)(µν)

)
£β gαβ

(Gσ)D = 0

I Every term in ∆ involves a total square of the form

∆ = N ((µν)(αβ))(£β gµν)(£β gαβ)

I Hence ∆ ≥ 0 automatic as long as the leading order is sign-definite

Easy task at any order in ∇: find all tensor structures N (αβ)(µν)[βµ, gµν ]
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Hydrostatics (Class H)

ΣM

ΣM

Kµ

Hydrostatic transport: time-independent equilibrium configurations

I ∃ timelike Killing vector Kµ = βµ|equil.:

£K gµν = 0

I Spacetime manifold M:
Euclidean structure ΣM × S1

Transport captured by Euclidean path integral/partition function:

WHydrostatic = −[total free energy] = −
[ˆ

ΣM

(
Gσ

T

)
dd−1Sσ

]
Hydrostatic

I Decompose: Gσ = S βσ + Vσ
I This splits Class H into two subclasses: H = HS ∪HV

I Variation w.r.t. gµν gives all hydrostatic Tµν
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Lagrangian solutions (Class L)

Consider Landau-Ginzburg action:

I Fields: fluid vector & background geometry = {βµ, gµν}
I Symmetries: diffeomorphism invariance

Seff =

ˆ √
−g L[βµ, gµν ]

I Basic variation defines hydrodynamic currents:

δSeff =
´ √
−g
[

1
2 T

µν δgµν + T hσ δβ
σ +∇µ(· · · )µ︸ ︷︷ ︸

surface term

]
I Further, define entropy current:

JµS = s uµ with s ≡
[

1√
−g

δSeff

δT

]
{uµ,gµν} fixed

= −hσβσ

I Can show: {Tµν , JµS} solve adiabaticity equation (= off-shell version
of 2nd law constraint)

Felix Haehl (Durham University), 13/27



Lagrangian solutions (Class L)

{βµ, gµν}

{�a, gab}

Xµ

Xµ(σ)

σa

To get correct dynamics, formulate problem as a σ-model:

Xµ :
worldvolume

reference con-
figuration

−→
space filling

brane
(physical

fluid)

gab =
∂Xµ

∂σa
∂Xν

∂σb
gµν [X(σ)] , �a =

∂σa

∂Xµ
βµ[X(σ)]

I Vary pullback fields Xµ, while holding
the reference configuration �a fixed

δSeff

δXµ
= 0

+ diffeo Bianchi id.

 ⇒ ∇µTµν ' 0

Lesson: fluids are naturally σ-models with dynamical d.o.f. = pullback maps

(c.f. formulation of non-dissipative fluids in terms of

Goldstone modes Dubovsky-Hui-Nicolis-Son ’11)
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What do we have so far?

Class A: anomalies can be dealt with once and forever

Class D: can genuinely produce entropy (∆ ≥ 0)

Class HF : Constitutive relations forbidden by 2nd law

Gσ = Sβσ + Vσ

Class H = HS ∪HV : Hydrostatic response to free energy density and flux

Class L: Wilsonian action giving currents consistent with 2nd law

I But Lagrangians being scalars, we only get: Class L = HS ∪HS

Some more situations that we’re missing so far:

I Free energy current Gσ could be zero or topological
I Non-hydrostatic free energy flux vectors (HV )

Felix Haehl (Durham University), 15/27



Berry-curvature type solutions (Class B)

∆ ≡ −∇σ
(Gσ
T

)
− 1

2T
µν £β gµν = 0

Consider the following currents:

(Tµν)B ∝
(
N (µν)(αβ) −N (αβ)(µν)

)
£β gαβ

(Gσ)B = 0

I Trivially solve adiabaticity equation
I Manifestly non-hydrostatic (£β gµν = 0 in hydrostatics)
I Seemingly not captured by Lagrangians (Class L)

Easy task at any order in ∇:
find all tensor structures N (αβ)(µν) built out of {βµ, gµν}

Examples in d = 2 + 1: Hall conductivity, Hall viscosity
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Transverse non-hydrostatic free energy (Class HV )

Remember splitting: Gσ = S βσ + Vσ with βσVσ = 0

Consider solutions to adiabaticity equation with non-trivial and
non-hydrostatic Vσ

I Transport genuinely due to free energy flux

These are in general parameterized as

(Tµν)HV
∝ DρCρ(µν)(αβ)

N £β gαβ + 2 C
ρ(µν)(αβ)
N Dρ£β gαβ

I Easy task at any order in ∇:

find all tensor structures C
ρ(µν)(αβ)
N built out of {βµ, gµν}
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Conserved entropy current (Class C)

Another trivial solution to adiabaticity equation:
exactly conserved entropy current

(JµS )C = Jµ with DµJµ ≡ 0 , (Tµν)C = 0

If cohomologically non-trivial: describes topological states in the fluid
(no energy/charge transport)

I Example: Euler current Jσ
Euler

in d = 2 + 1

DσJσ
Euler
≡ 0 ,

ˆ
ΣM

√
−γ (Jσ

Euler
uσ) ∝ χ(ΣM)

Golkar-Roberts-Son ’14
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Summary: Classification of hydrodynamic transport

Theorem: The eightfold way of hydrodynamic transport

. There are eight classes of {Tµν , JµS} consistent with ∇µJµS & 0.

. All of them can be constructed easily at all orders in ∇µ.

. Constitutive relations not produced by this algorithm, are forbidden
by second law (Class HF ).

FH-Loganayagam-Rangamani ’14 ’15

C
ρ(µν)(αβ)
N [βµ, gµν ]

´ √
−g L[βµ, gµν ]

(finite)

(finite)

´ √
−g L[βµ, gµν ]|equil.

(finite)
N [(µν)(αβ)][βµ, gµν ]

N ((µν)(αβ))[βµ, gµν ]
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Example: neutral Weyl-invariant fluid at O(∂2)

Most general 2nd order (neutral, Weyl-invariant) stress tensor:

Tµν
(2)

= (λ1 − κ)σ<µασα
ν>

→ Class D

+ (λ2 + 2τ − 2κ)σ<µαωα
ν>

→ Class B

+ τ
(
uαDW

α σ
µν − 2σ<µαωα

ν>
)

→ Class HS

+ λ3 ω
<µαωα

ν>

→ Class HS

+ κ
(
Cµανβuαuβ + σ<µασα

ν> + 2σ<µαωα
ν>
)

→ Class HS
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→ Class HS

τ , λ3, κ

Are all derivable from a Lagrangian (Class L)

LW
2 =

1

4

[
−

2κ

(d− 2)
(WR) + 2 (κ− τ)σ2 + (λ3 − κ)ω2

]
Note: λ3 and κ are hydrostatic, τ is genuinely hydrodynamic
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Example: neutral Weyl-invariant fluid at O(∂2)

Most general 2nd order (neutral, Weyl-invariant) stress tensor:

Tµν
(2)
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ν>
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+ τ
(
uαDW

α σ
µν − 2σ<µαωα

ν>
)

→ Class HS

+ λ3 ω
<µαωα

ν> → Class HS

+ κ
(
Cµανβuαuβ + σ<µασα

ν> + 2σ<µαωα
ν>
)

→ Class HS

(λ1 − κ)
Leads to entropy production ∆ ' −(λ1 − κ) 1

T σ
µ
νσ

ν
ρσ

ρ
µ

⇒ Dissipative (⇒ not captured by L-G Lagrangian)
(but unconstrained by second law, since σ3 � σ2)
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+ τ
(
uαDW
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ν>
)
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+ λ3 ω
<µαωα

ν> → Class HS

+ κ
(
Cµανβuαuβ + σ<µασα

ν> + 2σ<µαωα
ν>
)

→ Class HS

(λ2 + 2τ − 2κ)

Is of the form of a Class B constitutive relation

(Tµν)B ≡ −
1

4

(
N (µν)(αβ) −N (αβ)(µν)

)
£β gαβ

(Gσ)B = 0

because of orthogonality: σ<µαωα
ν>£β gµν = 0
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Example: neutral Weyl-invariant fluid at O(∂2)

Out of 5 transport coefficients, 3 come from a Lagrangian: τ , λ3 and κ

For fluids described by L[βµ, gµν ], the other 2 combinations are zero:

(λ1 − κ) = 0 and (λ2 + 2τ − 2κ) = 0

I These relations have been observed in Einstein gravity
F Our simple Lagrangians seem to know about holography

Haack-Yarom ’08

F Derive L[βµ, gµν ] from gravity directly? Nickel-Son ’10

de Boer et al. ’15, Crossley et al. ’15
I First relation ensures no entropy production at subleading order

(this is not required by second law!)
→ ”Principle of minimum dissipation“ in holography?

FH-Loganayagam-Rangamani ’14
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Schwinger-Keldysh doubling

Non-equilibrium effective field theory in general described by
Schwinger-Keldysh formalism

I Systems in mixed state: path integral evolves both | · 〉 and 〈 · |

Double fields & symmetries:

Hphys ⊂ HR ⊗HL

bt
iε

i(ε− β)

R copy

L copy

OR

OL

Ô

In principle many applications: off-equilibrium physics, dissipation, gravity
with horizons, complementarity, ...

CFTRCFTL

Schwinger, Keldysh,

Feynman-Vernon, ’60s
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Schwinger-Keldysh hydrodynamics?

Can we upgrade Class L Lagrangians to describe all 8 classes, using
Schwinger-Keldysh?

Would like to double the sources: gµν → {gµν , g̃µν}
I ...and write something like

Seff =

ˆ √
−g

1

2
Tµν [βµ, gµν ] g̃µν

⇒
2
√
−g

δSeff

δg̃µν
= Tµν

This would allow us to get any Tµν from an action. Including Class HF !

Problem:
Just blindly doubling gives too much freedom.
Can easily violate 2nd law.

I Doubling is very powerful. But how to control it?
I Important obstacle for systematic understanding of eff. field theory of

mixed states (dissipation, entanglement, horizons, ...)

Felix Haehl (Durham University), 23/27



A new macroscopic symmetry

We found a consistent Schwinger-Keldysh doubling for hydrodynamics.
It is constrained in exactly the right way to reproduce the eightfold way.
“Danger of doubling” controlled by introducing an emergent U(1)T symmetry.

Remember Class L free energy current: Gµ = −Luµ + T (bdy. termβ)µ

I Nµ ≡ −G
µ

T is Noether current for diffeos along βµ

Postulate a U(1)T gauge symmetry with gauge field A(T)
µ coupling to Nµ

Proposed field content:

. Hydrodynamic field: βµ

. Background source: gµν

. SK copy of source: g̃µν

. U(1)T gauge field: A(T)
µ

Felix Haehl (Durham University), 24/27
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The eightfold master Lagrangian (Class LT)

Any constitutive relations {Tµν ,Gσ} which satisfy adiabaticity
equation can be obtained from a diffeo and U(1)T invariant Lagrangian:

LT =
1

2
Tµν [βµ, gµν ]g̃µν −

Gσ[βµ, gµν ]

T
A(T)

σ

I Bianchi identity for U(1)T invariance reduces to adiabaticity equation
I Equations of motion are:

F As in Class L: DνT
µν ' 0

F From A(T)
σ: DµJ

µ
S ' 0

Conversely: any diffeo and U(1)T invariant Lagrangian gives adiabatic
constitutive relations

I That is: U(1)T invariance gives precisely the right constraint!

FH-Loganayagam-Rangamani ’14-’15
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Outlook: Talk next Friday (Nov 20, string group meeting)

Try to derive this scenario from first principles

Study Schwinger-Keldysh path integrals in detail

Find very interesting and universal structures:

I Hidden topological (BRST) supersymmetry behind
every SK path integral (incl. relativistic fluids)

I Associated ghosts are crucial to retain unitarity

I Gauge theory of entropy: general field theory argument

Formulate eff. action for all 8 classes

I Dissipation has to do with ghosts

I Via AdS/CFT: all these features should play some role
in black holes → lots of interesting conjectures to work on

Felix Haehl (Durham University), 26/27



Summary

8 classes of constitutive relations consistent with the Second Law

I gave a recipe for constructing them at any order

The classification is useful and physical:

I Computations become simpler in this framework
(classification often tells what is the “nicest” basis to work in)

I Conjecture: long-wavelength near-horizon AdS dynamics
can be usefully characterized using the Eightfold Way

I “Minimum dissipation conjecture”:
Holographic fluids optimize entropy production.

Schwinger-Keldysh doubling is powerful but dangerous

I Proposal: emergent U(1)T gauge symmetry controls the
doubling in hydrodynamics

I Next week: systematic justification of U(1)T

Felix Haehl (Durham University), 27/27
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