Adiabatic Hydrodynamics and the Eightfold Way to Dissipation

Felix Haehl (Durham University & PI)

Perimeter Institute — 12 November 2015

FH, R. Loganayagam, M. Rangamani [1412.1090], [1502.00636], (see also [1312.0610], [1510.02494], [1511.xxxxx], ...)

Outline

• The hydrodynamic gradient expansion

- Classification of transport
- Example: conformal fluid
- Schwinger-Keldysh and emergent gauge symmetry
- Outlook and conclusion

The hydrodynamic gradient expansion

• Hydrodynamics: generic near-equilibrium eff. field theory for long wavelength fluctuations

microscopic theory

 $\downarrow L \gg \ell_{\rm mfp}$

macroscopic fluid variables:	$u^{\mu}(x), T(x), \mu(x)$	$(u^2 = -1)$
background sources:	$g_{\mu u}(x), A_{\mu}(x)$	

Ļ

Constitutive relations:	Dynamics:
$T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)} + \dots$	$\nabla_{\nu}T^{\mu\nu} \simeq F^{\mu\nu}J_{\nu}$
$J^{\alpha} = J^{\alpha}_{(0)} + J^{\alpha}_{(1)} + \dots$	$\nabla_{\alpha}J^{\alpha}\simeq 0$

• E.g.: $T^{\mu\nu}_{(0)} = \varepsilon(T,\mu) \, u^{\mu} u^{\nu} + p(T,\mu) \left(g^{\mu\nu} + u^{\mu} u^{\nu}\right), \quad J^{\alpha}_{(0)} = q(T,\mu) \, u^{\alpha}$

The hydrodynamic gradient expansion

• Hydrodynamics: generic near-equilibrium eff. field theory for long wavelength fluctuations

microscopic theory

 $\downarrow L \gg \ell_{\rm mfp}$

macroscopic fluid variables:	$u^{\mu}(x), T(x), \mu(x)$	$(u^2 = -1)$
background sources:	$g_{\mu u}(x),A_{\mu}(x)$	

Ļ

Constitutive relations:	Dynamics:
$T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)} + \dots$	$\nabla_{\nu} T^{\mu\nu} \simeq F^{\mu\nu} J_{\nu} + \stackrel{\downarrow}{\mathbf{T}_{H}^{\perp\nu}}$
$J^{\alpha} = J^{\alpha}_{(0)} + J^{\alpha}_{(1)} + \dots$	$\nabla_{\alpha} J^{\alpha} \simeq \overbrace{\mathbf{J}_{H}^{\perp}}^{\perp}$ (cov. anomalies)

• E.g.: $T^{\mu\nu}_{(0)} = \varepsilon(T,\mu) \, u^{\mu} u^{\nu} + p(T,\mu) \left(g^{\mu\nu} + u^{\mu} u^{\nu}\right), \quad J^{\alpha}_{(0)} = q(T,\mu) \, u^{\alpha}$

The hydrodynamic gradient expansion

- "Solving hydrodynamics" in this talk does not mean...
 ... to calculate transport coefficients (ε, p, ...) for any particular microscopic system
 ... to solve the fluid equations for {u^μ(x), T(x), μ(x)}
- It rather means: to provide all symmetry-allowed constitutive relations order by order in ∇_μ which are consistent with the

Plan

This talk: the structure of hydrodynamics

• Understand constitutive relations allowed by Second Law:

- Classify hydrodynamic transport in a physically useful way
- Construct most general solution at all orders
- Suggest a **unifying framework** for adiabatic transport:
 - New gauge symmetry that explains the 2nd law constraint

Talk on Nov 20: the field theory behind hydrodynamics

- Use hydrodynamics as a tractable starting point to learn basic lessons about some important problems across physics:
 - ▷ How to understand hydrodynamics as a Wilsonian field theorist?
 - \triangleright Ingredients: Schwinger-Keldysh, SUSY, topological $\sigma\text{-models},$...
 - Black holes via AdS/CFT: dissipation, entropy, unitarity, ...

Outline

- The hydrodynamic gradient expansion
- Classification of transport
- Example: conformal fluid
- Schwinger-Keldysh and emergent gauge symmetry
- Outlook and conclusion

Disclaimer

From now on I will only discuss neutral fluids.

Adding an arbitrary number of abelian or non-abelian flavours is just a technical task without new conceptual ideas, see [1502.00636].

Off-shell entropy production and adiabaticity

- Inequality constraint $\nabla_{\mu}J_{S}^{\mu} \gtrsim 0$ is much more conveniently incorporated if we don't have to simplify it using equations of motion.
- Use Lagrange multiplier β^{μ} and consider off-shell statement:

$$\nabla_{\mu}J_{S}^{\mu} + \beta_{\mu}\left(\nabla_{\nu}T^{\mu\nu} - T_{H}^{\mu\perp}\right) \equiv \Delta \geq 0$$

• Natural Lagrange multiplier:

• $\beta^{\mu} = \frac{1}{T} u^{\mu}$ (local thermal vector)

Task: solve for $\{J_S^{\mu}, T^{\mu\nu}\}$ as functionals of $\{\beta^{\mu}, g_{\mu\nu}\}$

Ideally: find effective action which defines all solutions off-shell

- Marginal case $\Delta = 0$: 'adiabaticity equation'
 - Particularly rich structure! \Rightarrow focus on this first

Loganayagam '11

Aside: adiabaticity equation for free energy current

$$\nabla_{\mu}J_{S}^{\mu} + \beta_{\mu}\left(\nabla_{\nu}T^{\mu\nu} - T_{H}^{\mu\perp}\right) = 0$$

• Can trade entropy current J_S^{μ} for free energy current \mathcal{G}^{μ} :

$$-\frac{\mathcal{G}^{\mu}}{T} \equiv J_{S}^{\mu} - (J_{S}^{\mu})_{canonical} \qquad \text{with} \qquad (J_{S}^{\mu})_{canonical} = -\beta_{\nu} T^{\mu\nu}$$

• Grand-canonical version of adiabaticity equation:

$$-\left[\nabla_{\mu}\left(\frac{\mathcal{G}^{\mu}}{T}\right) - \frac{\mathcal{G}_{H}^{\perp}}{T}\right] = \frac{1}{2} T^{\mu\nu} \pounds_{\beta} g_{\mu\nu}$$

• Solve for $\{\mathcal{G}^{\mu}, T^{\mu\nu}\}$ as functionals of $\{\mathcal{B}^{\mu}, g_{\mu\nu}\}$

Classification of hydrodynamic transport

Classification of hydrodynamic transport

Anomaly induced transport (Class A)

$$-\left[\nabla_{\sigma}\left(\frac{\mathcal{G}^{\sigma}}{T}\right) - \frac{\mathcal{G}_{H}^{\perp}}{T}\right] = \frac{1}{2} T^{\mu\nu} \pounds_{\beta} g_{\mu\nu} + \Delta$$

• First of all: let's get rid of anomalies $\mathcal{G}_{H}^{\perp} = -u_{\nu} T_{H}^{\nu \perp}$

• Can always split off from a solution $\{\mathcal{G}^{\sigma}, T^{\mu\nu}\}$ a **particular solution** $\{(\mathcal{G}^{\sigma})_A, (T^{\mu\nu})_A\}$ that takes care of anomalies with $(\Delta)_A = 0$:

$$-\left[\nabla_{\sigma}\left(\frac{(\mathcal{G}^{\sigma})_{A}}{T}\right) - \frac{\mathcal{G}_{H}^{\perp}}{T}\right] = \frac{1}{2} (T^{\mu\nu})_{A} \pounds_{\beta} g_{\mu\nu}$$

Loganayagam '11

Jensen-Loganayagam-Yarom '13

► Anomalous transport coefficients fixed in terms of anomaly polynomial ⇒ finite class

Dissipative transport (Class D)

$$\Delta \equiv -\nabla_{\sigma} \left(\frac{\mathcal{G}^{\sigma}}{T} \right) - \frac{1}{2} T^{\mu\nu} \, \pounds_{\beta} \, g_{\mu\nu} \ge 0$$

- Now consider transport which does generically produce entropy $(\Delta>0)$
- Such terms appear in three varieties:
 - () Sign-definite terms (inequalities from 2nd law)
 - \rightarrow These only show up at leading order!

```
Bhattacharyya '11 '13 '14
```

- Sign-indefinite terms which are dominated by sign-definite terms (no constraints from 2nd law)
- (3) Sign-indefinite terms which are dominant in derivative expansion (forbidden by 2nd law)
- Example: $\begin{array}{ll} T^{\mu\nu}_{(1)} = -\zeta \, \Theta \left(g^{\mu\nu} + u^{\mu}u^{\nu} \right) & (\Theta \equiv \nabla_{\mu}u^{\mu}) \\ \text{gives} & \Delta = \zeta \; \frac{1}{T}\Theta^2 \; \Rightarrow \; \zeta \geq 0 & (\text{type } \textcircled{1}) \end{array}$
 - $\Rightarrow \text{ At higher orders:} \\ \text{any } T_{(2)}^{\mu\nu} = \gamma [\partial \partial]^{\mu\nu} \text{ s.t. } \Delta = \gamma \Theta^3 \\ \text{will be subdominant, hence unconstrained (type ②)}$

Hydrostatically forbidden terms (Class H_F)

$$\Delta \equiv -\nabla_{\sigma} \left(\frac{\mathcal{G}^{\sigma}}{T}\right) - \frac{1}{2} T^{\mu\nu} \, \pounds_{\beta} \, g_{\mu\nu} \ge 0$$

• Type (3): sign-indefinite terms at dominant order in ∂

- Need to be zero for consistency with 2nd law!
- Example: Ideal fluid

$$T_{(0)}^{\mu\nu} = \varepsilon \, u^{\mu} u^{\nu} + p \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right), \qquad J_{S,(0)}^{\mu} = s \, u^{\mu}$$

$$\Rightarrow \quad \Delta \simeq \underbrace{\left(Ts - \varepsilon - p \right)}_{=0 \; (!)} \; \underbrace{\frac{\Theta}{T}}_{=0 \; (!)} + \underbrace{\left(T \frac{ds}{dT} - \frac{d\varepsilon}{dT} \right)}_{=0 \; (!)} \; \underbrace{\frac{(u\nabla)T}{T}}_{=0 \; (!)}$$

- A-priori: 3 parameters
- But second law enforces: 2 relations
- This is **Class** H_F : combinations forbidden by 2^{nd} law

Dissipative transport (Class D)

$$\Delta \equiv -\nabla_{\sigma} \left(\frac{\mathcal{G}^{\sigma}}{T}\right) - \frac{1}{2} T^{\mu\nu} \, \pounds_{\beta} \, g_{\mu\nu} \ge 0$$

• There's a simple way to construct Class D explicitly:

$$(T^{\mu\nu})_{\mathsf{D}} = -\left(\mathcal{N}^{(\mu\nu)(\alpha\beta)} + \mathcal{N}^{(\alpha\beta)(\mu\nu)}\right) \,\pounds_{\beta} \,g_{\alpha\beta}$$
$$(\mathcal{G}^{\sigma})_{\mathsf{D}} = 0$$

 \blacktriangleright Every term in Δ involves a total square of the form

$$\Delta = \mathcal{N}^{((\mu\nu)(\alpha\beta))}(\pounds_{\beta} g_{\mu\nu})(\pounds_{\beta} g_{\alpha\beta})$$

- Hence $\Delta \ge 0$ automatic as long as the leading order is sign-definite

• Easy task at any order in ∇ : find all tensor structures $\mathcal{N}^{(\alpha\beta)(\mu\nu)}[\boldsymbol{\beta}^{\mu},g_{\mu\nu}]$

Hydrostatics (Class H)

- Hydrostatic transport: time-independent equilibrium configurations¹
 - ▶ ∃ timelike Killing vector $K^{\mu} = \beta^{\mu}|_{equil}$.

$$\pounds_K g_{\mu\nu} = 0$$

 Spacetime manifold *M*: Euclidean structure Σ_M × S¹

• Transport captured by Euclidean path integral/partition function:

$$W_{\text{Hydrostatic}} = -[\text{total free energy}] = -\left[\int_{\Sigma_{\mathcal{M}}} \left(\frac{\mathcal{G}^{\sigma}}{T}\right) d^{d-1}S_{\sigma}\right]_{\text{Hydrostatic}}$$

- Decompose: $\mathcal{G}^{\sigma} = \mathcal{S} \, \beta^{\sigma} + \mathcal{V}^{\sigma}$
- This splits Class H into two subclasses: $H = H_S \cup H_V$
- Variation w.r.t. $g_{\mu\nu}$ gives all hydrostatic $T^{\mu\nu}$

Lagrangian solutions (Class L)

- Consider Landau-Ginzburg action:
 - Fields: fluid vector & background geometry = $\{\beta^{\mu}, g_{\mu\nu}\}$
 - Symmetries: diffeomorphism invariance

$$S_{\rm eff} = \int \sqrt{-g} \; \mathcal{L}[\pmb{\beta}^\mu, g_{\mu\nu}]$$

Basic variation defines hydrodynamic currents:

$$\delta S_{\text{eff}} = \int \sqrt{-g} \left[\frac{1}{2} T^{\mu\nu} \, \delta g_{\mu\nu} + T \, \mathfrak{h}_{\sigma} \, \delta \beta^{\sigma} + \underbrace{\nabla_{\mu} (\cdots)^{\mu}}_{\text{surface term}} \right]$$

Further, define entropy current:

$$J_{S}^{\mu} = s \, u^{\mu} \qquad \text{with} \qquad s \equiv \left[\frac{1}{\sqrt{-g}} \frac{\delta S_{\text{eff}}}{\delta T}\right]_{\{u^{\mu}, g_{\mu\nu}\} \text{ fixed}} = -\mathfrak{h}_{\sigma} \boldsymbol{\beta}^{\sigma}$$

► Can show: {T^{µν}, J^µ_S} solve adiabaticity equation (= off-shell version of 2nd law constraint)

Lagrangian solutions (Class L)

• To get correct dynamics, formulate problem as a σ -model:

$$\left. \begin{array}{l} \displaystyle \frac{\delta S_{\rm eff}}{\delta X^{\mu}} = 0 \\ + \mbox{ diffeo Bianchi id.} \end{array} \right\} \qquad \Rightarrow \qquad \nabla_{\mu} T^{\mu\nu} \simeq 0$$

Lesson: fluids are naturally σ -models with dynamical d.o.f. = pullback maps

(c.f. formulation of non-dissipative fluids in terms of Goldstone modes Duborsky-Hui-A(icolis-5on '11) Felix Haehl (Durham University), 14/27

What do we have so far?

- Class A: anomalies can be dealt with once and forever
- Class D: can genuinely produce entropy $(\Delta \geq 0)$
- Class H_F : Constitutive relations forbidden by 2nd law

- Class $H = H_S \cup H_V$: Hydrostatic response to free energy density and flux
- Class L: Wilsonian action giving currents consistent with 2nd law
 - But Lagrangians being scalars, we only get: Class $\mathsf{L} = \mathrm{H}_S \cup \overline{\mathrm{H}}_S$
- Some more situations that we're missing so far:
 - Free energy current \mathcal{G}^{σ} could be **zero** or **topological**
 - ► Non-hydrostatic free energy flux vectors (H
 V)

Berry-curvature type solutions (Class B)

$$\Delta \equiv -\nabla_{\sigma} \left(\frac{\mathcal{G}^{\sigma}}{T}\right) - \frac{1}{2} T^{\mu\nu} \, \pounds_{\beta} \, g_{\mu\nu} = 0$$

• Consider the following currents:

$$(T^{\mu\nu})_{\mathsf{B}} \propto \left(\mathcal{N}^{(\mu\nu)(\alpha\beta)} - \mathcal{N}^{(\alpha\beta)(\mu\nu)} \right) \, \pounds_{\beta} \, g_{\alpha\beta} \\ (\mathcal{G}^{\sigma})_{\mathsf{B}} = 0$$

- Trivially solve adiabaticity equation
- Manifestly **non-hydrostatic** ($\pounds_{\beta} g_{\mu\nu} = 0$ in hydrostatics)
- Seemingly not captured by Lagrangians (Class L)
- Easy task at any order in ∇ : find all tensor structures $\mathcal{N}^{(\alpha\beta)(\mu\nu)}$ built out of $\{\beta^{\mu}, g_{\mu\nu}\}$
- Examples in d = 2 + 1: Hall conductivity, Hall viscosity

- Remember splitting: $\mathcal{G}^{\sigma} = \mathcal{S} \, \beta^{\sigma} + \mathcal{V}^{\sigma}$ with $\beta_{\sigma} \mathcal{V}^{\sigma} = 0$
- $\bullet\,$ Consider solutions to adiabaticity equation with non-trivial and non-hydrostatic \mathcal{V}^σ
 - Transport genuinely due to free energy flux
- These are in general parameterized as

$$(T^{\mu\nu})_{\overline{\mathrm{H}}_{V}} \propto D_{\rho} \mathfrak{C}_{\mathcal{N}}^{\rho(\mu\nu)(\alpha\beta)} \pounds_{\beta} g_{\alpha\beta} + 2 \mathfrak{C}_{\mathcal{N}}^{\rho(\mu\nu)(\alpha\beta)} D_{\rho} \pounds_{\beta} g_{\alpha\beta}$$

► Easy task at any order in ∇: find all tensor structures C^{ρ(µν)(αβ)} built out of {β^µ, g_{µν}} Conserved entropy current (Class C)

• Another trivial solution to adiabaticity equation: exactly conserved entropy current

$$(J_S^{\mu})_C = \mathsf{J}^{\mu}$$
 with $D_{\mu}\mathsf{J}^{\mu} \equiv 0$, $(T^{\mu\nu})_C = 0$

• If cohomologically non-trivial: describes **topological states** in the fluid (no energy/charge transport)

► Example: Euler current
$$J_{Euler}^{\sigma}$$
 in $d = 2 + 1$
 $D_{\sigma} J_{Euler}^{\sigma} \equiv 0$, $\int_{\Sigma_{\mathcal{M}}} \sqrt{-\gamma} \left(J_{Euler}^{\sigma} u_{\sigma} \right) \propto \chi(\Sigma_{\mathcal{M}})$

Summary: Classification of hydrodynamic transport

FH-Loganayagam-Rangamani '14 '15

Theorem: The eightfold way of hydrodynamic transport

- ▷ There are eight classes of $\{T^{\mu\nu}, J_S^{\mu}\}$ consistent with $\nabla_{\mu} J_S^{\mu} \gtrsim 0$.
- \triangleright All of them can be constructed easily at all orders in ∇_{μ} .
- \triangleright Constitutive relations not produced by this algorithm, are forbidden by second law (Class H_F).

Outline

- The hydrodynamic gradient expansion
- Classification of transport
- Example: conformal fluid
- Schwinger-Keldysh and emergent gauge symmetry
- Outlook and conclusion

• Most general 2nd order (neutral, Weyl-invariant) stress tensor:

$$T_{(2)}^{\mu\nu} = (\lambda_1 - \kappa) \, \sigma^{<\mu\alpha} \sigma_{\alpha}{}^{\nu>} + (\lambda_2 + 2\tau - 2\kappa) \, \sigma^{<\mu\alpha} \omega_{\alpha}{}^{\nu>} + \tau \, \left(u^{\alpha} \mathcal{D}^{W}_{\alpha} \sigma^{\mu\nu} - 2\sigma^{<\mu\alpha} \omega_{\alpha}{}^{\nu>} \right) + \lambda_3 \, \omega^{<\mu\alpha} \omega_{\alpha}{}^{\nu>} + \kappa \left(C^{\mu\alpha\nu\beta} u_{\alpha} u_{\beta} + \sigma^{<\mu\alpha} \sigma_{\alpha}{}^{\nu>} + 2\sigma^{<\mu\alpha} \omega_{\alpha}{}^{\nu>} \right)$$

• Most general 2nd order (neutral, Weyl-invariant) stress tensor:

$$T_{(2)}^{\mu\nu} = (\lambda_1 - \kappa) \, \sigma^{<\mu\alpha} \sigma_{\alpha}^{\nu>} + (\lambda_2 + 2\tau - 2\kappa) \, \sigma^{<\mu\alpha} \omega_{\alpha}^{\nu>} + \tau \, \left(u^{\alpha} \mathcal{D}_{\alpha}^{\mathcal{W}} \sigma^{\mu\nu} - 2\sigma^{<\mu\alpha} \omega_{\alpha}^{\nu>} \right) \qquad \rightarrow \text{Class } \overline{\mathrm{H}}_S + \lambda_3 \, \omega^{<\mu\alpha} \omega_{\alpha}^{\nu>} \qquad \rightarrow \text{Class } \mathrm{H}_S$$

$$+ \kappa \left(C^{\mu\alpha\nu\beta} u_{\alpha} u_{\beta} + \sigma^{<\mu\alpha} \sigma_{\alpha}^{\nu>} + 2\sigma^{<\mu\alpha} \omega_{\alpha}^{\nu>} \right) \quad \rightarrow \mathsf{Class} \ \mathrm{H}_S$$

au, λ_3 , κ

Are all derivable from a Lagrangian (Class L)

$$\mathcal{L}_{2}^{\mathcal{W}} = \frac{1}{4} \left[-\frac{2\kappa}{(d-2)} (^{\mathcal{W}}R) + 2(\kappa - \tau) \sigma^{2} + (\lambda_{3} - \kappa) \omega^{2} \right]$$

Note: λ_3 and κ are hydrostatic, τ is genuinely hydrodynamic

• Most general 2nd order (neutral, Weyl-invariant) stress tensor:

$$\begin{split} T^{\mu\nu}_{(2)} &= (\lambda_1 - \kappa) \, \sigma^{<\mu\alpha} \sigma_{\alpha}^{\nu >} & \to \text{Class D} \\ &+ (\lambda_2 + 2\tau - 2\kappa) \, \sigma^{<\mu\alpha} \omega_{\alpha}^{\nu >} \\ &+ \tau \, \left(u^{\alpha} \mathcal{D}^{\mathcal{W}}_{\alpha} \sigma^{\mu\nu} - 2\sigma^{<\mu\alpha} \omega_{\alpha}^{\nu >} \right) & \to \text{Class } \overline{\mathrm{H}}_S \\ &+ \lambda_3 \, \omega^{<\mu\alpha} \omega_{\alpha}^{\nu >} & \to \text{Class } \mathrm{H}_S \end{split}$$

$$+ \kappa \left(C^{\mu\alpha\nu\beta} u_{\alpha} u_{\beta} + \sigma^{<\mu\alpha} \sigma_{\alpha}^{\nu>} + 2\sigma^{<\mu\alpha} \omega_{\alpha}^{\nu>} \right) \quad \rightarrow \mathsf{Class} \ \mathrm{H}_S$$

$$\begin{split} & (\lambda_1 - \kappa) \\ & \text{Leads to entropy production } \Delta \simeq -(\lambda_1 - \kappa) \frac{1}{T} \, \sigma^{\mu}{}_{\nu} \sigma^{\nu}{}_{\rho} \sigma^{\rho}{}_{\mu} \\ & \Rightarrow \text{Dissipative (} \Rightarrow \text{ not captured by L-G Lagrangian)} \\ & \text{(but unconstrained by second law, since } \sigma^3 \ll \sigma^2) \end{split}$$

• Most general 2nd order (neutral, Weyl-invariant) stress tensor:

$$T^{\mu\nu}_{(2)} = (\lambda_1 - \kappa) \,\sigma^{<\mu\alpha} \sigma_{\alpha}^{\nu>} \qquad \rightarrow \text{Class D}$$

$$+ (\lambda_2 + 2\tau - 2\kappa) \, \sigma^{<\mu\alpha} \omega_{\alpha}{}^{\nu>} \qquad \rightarrow \mathsf{Class} \; \mathsf{B}$$

$$+ \tau \left(u^{\alpha} \mathcal{D}^{\mathcal{W}}_{\alpha} \sigma^{\mu\nu} - 2\sigma^{<\mu\alpha} \omega_{\alpha}{}^{\nu>} \right) \qquad \rightarrow \mathsf{Class} \ \overline{\mathrm{H}}_{S}$$

$$+ \lambda_3 \, \omega^{<\mu\alpha} \omega_{\alpha}^{\nu>}$$
 \rightarrow Class H_S

$$+ \kappa \left(C^{\mu\alpha\nu\beta} u_{\alpha} u_{\beta} + \sigma^{<\mu\alpha} \sigma_{\alpha}^{\nu>} + 2\sigma^{<\mu\alpha} \omega_{\alpha}^{\nu>} \right) \quad \rightarrow \mathsf{Class} \ \mathrm{H}_S$$

 $(\lambda_2 + 2\tau - 2\kappa)$

Is of the form of a Class B constitutive relation

$$(T^{\mu\nu})_{\mathsf{B}} \equiv -\frac{1}{4} \left(\mathcal{N}^{(\mu\nu)(\alpha\beta)} - \mathcal{N}^{(\alpha\beta)(\mu\nu)} \right) \, \pounds_{\beta} \, g_{\alpha\beta} \\ (\mathcal{G}^{\sigma})_{\mathsf{B}} = 0$$

because of orthogonality: $\sigma^{<\mu\alpha}\omega_{\alpha}{}^{\nu>} \pounds_{\beta} g_{\mu\nu} = 0$

- Out of 5 transport coefficients, 3 come from a Lagrangian: au, λ_3 and κ
- For fluids described by $\mathcal{L}[\beta^{\mu}, g_{\mu\nu}]$, the other 2 combinations are zero:

 $(\lambda_1 - \kappa) = 0$ and $(\lambda_2 + 2\tau - 2\kappa) = 0$

- ► These relations have been observed in Einstein gravity Haack-Jarom 108
 - ★ Our simple Lagrangians seem to know about holography
 - * Derive $\mathcal{L}[\beta^{\mu}, g_{\mu\nu}]$ from gravity directly? *Nickel-Son* '10

de Boer et al. '15, Crossley et al. '15

First relation ensures no entropy production at subleading order (this is not required by second law!)

 \rightarrow "Principle of minimum dissipation" in holography?

FH-Loganayagam-Rangamani '14

Outline

- The hydrodynamic gradient expansion
- Classification of transport
- Example: conformal fluid
- Schwinger-Keldysh and emergent gauge symmetry
- Outlook and conclusion

Schwinger-Keldysh doubling

- Non-equilibrium effective field theory in general described by **Schwinger-Keldysh** formalism
 - \blacktriangleright Systems in mixed state: path integral evolves both $|\,\cdot\,\rangle$ and $\langle\,\cdot\,|$

• In principle many applications: off-equilibrium physics, dissipation, gravity with horizons, complementarity, ...

Schwinger-Keldysh hydrodynamics?

- Can we upgrade Class L Lagrangians to describe all 8 classes, using Schwinger-Keldysh?
- Would like to double the sources: $g_{\mu\nu} \rightarrow \{g_{\mu\nu}, \tilde{g}_{\mu\nu}\}$
 - ...and write something like

$$\begin{split} S_{\text{eff}} &= \int \sqrt{-g} \; \frac{1}{2} \, T^{\mu\nu} [\boldsymbol{\beta}^{\mu}, g_{\mu\nu}] \, \tilde{g}_{\mu\nu} \\ \Rightarrow \; \; \frac{2}{\sqrt{-g}} \frac{\delta S_{\text{eff}}}{\delta \tilde{g}_{\mu\nu}} = T^{\mu\nu} \end{split}$$

• This would allow us to get any $T^{\mu\nu}$ from an action. Including Class H_F !

Problem: Just blindly doubling gives too much freedom. Can easily violate 2nd law.

- Doubling is very powerful. But how to control it?
- Important obstacle for systematic understanding of eff. field theory of mixed states (dissipation, entanglement, horizons, ...)

A new macroscopic symmetry

We found a consistent Schwinger-Keldysh doubling for hydrodynamics. It is constrained in exactly the right way to reproduce the eightfold way. "Danger of doubling" controlled by introducing an emergent $U(1)_T$ symmetry.

A new macroscopic symmetry

We found a consistent Schwinger-Keldysh doubling for hydrodynamics. It is constrained in exactly the right way to reproduce the eightfold way. "Danger of doubling" controlled by introducing an emergent $U(1)_T$ symmetry.

- Remember Class L free energy current: $\mathcal{G}^{\mu} = -\mathcal{L} u^{\mu} + T(bdy. term_{\beta})^{\mu}$
 - $N^{\mu} \equiv -\frac{\mathcal{G}^{\mu}}{T}$ is Noether current for diffeos along β^{μ}
- $\bullet\,$ Postulate a $U(1)_{\rm T}$ gauge symmetry with gauge field ${\rm A^{(T)}}_{\mu}$ coupling to ${\rm N}^{\mu}$

Proposed field content:	
Hydrodynamic field:	$oldsymbol{eta}^{\mu}$
Background source:	$g_{\mu u}$
SK copy of source:	$\tilde{g}_{\mu u}$
\triangleright $U(1)_{T}$ gauge field:	$A^{(T)}_{\mu}$

The eightfold master Lagrangian (Class L_{τ})

• Any constitutive relations $\{T^{\mu\nu}, \mathcal{G}^{\sigma}\}$ which satisfy adiabaticity equation can be obtained from a diffeo and $U(1)_{\mathsf{T}}$ invariant Lagrangian:

$$\mathcal{L}_{\rm T} = \frac{1}{2} T^{\mu\nu} [\boldsymbol{\beta}^{\mu}, g_{\mu\nu}] \tilde{g}_{\mu\nu} - \frac{\mathcal{G}^{\sigma} [\boldsymbol{\beta}^{\mu}, g_{\mu\nu}]}{T} \, \mathsf{A}^{\rm (T)}{}_{\sigma}$$

- Bianchi identity for U(1)_T invariance reduces to adiabaticity equation
 Equations of motion are:
 - $\begin{array}{ll} \star & \mbox{As in Class L:} & D_{\nu}T^{\mu\nu} \simeq 0 \\ \star & \mbox{From $\mathsf{A}^{(\mathrm{T})}_{\sigma}$:} & D_{\mu}J^{\mu}_{S} \simeq 0 \end{array}$
- \bullet Conversely: any diffeo and $U(1)_{\rm T}$ invariant Lagrangian gives adiabatic constitutive relations
 - That is: $U(1)_T$ invariance gives precisely the right constraint!

FH-Loganayagam-Rangamani '14-'15

Outline

- The hydrodynamic gradient expansion
- Classification of transport
- Example: conformal fluid
- Schwinger-Keldysh and emergent gauge symmetry
- Outlook and conclusion

Outlook: Talk next Friday (Nov 20, string group meeting)

- Try to derive this scenario from first principles
- Study Schwinger-Keldysh path integrals in detail
- Find very interesting and universal structures:
 - Hidden topological (BRST) supersymmetry behind every SK path integral (incl. relativistic fluids)
 - Associated **ghosts** are crucial to retain unitarity
 - Gauge theory of entropy: general field theory argument
- Formulate eff. action for all 8 classes
 - Dissipation has to do with ghosts
 - ► Via AdS/CFT: all these features should play some role in black holes → lots of interesting conjectures to work on

Summary

- 8 classes of constitutive relations consistent with the Second Law
- I gave a recipe for constructing them at any order
- The classification is useful and physical:
 - Computations become simpler in this framework (classification often tells what is the "nicest" basis to work in)
 - Conjecture: long-wavelength near-horizon AdS dynamics can be usefully characterized using the Eightfold Way
 - "Minimum dissipation conjecture": Holographic fluids optimize entropy production.
- Schwinger-Keldysh doubling is powerful but dangerous
 - ▶ Proposal: emergent U(1)_T gauge symmetry controls the doubling in hydrodynamics
 - Next week: systematic justification of $U(1)_{\mathsf{T}}$