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Black Holes
We have seen previously that something weird happens when we 
fall towards the origin of the Schwarzschild metric; while the proper 
motion for the fall is finite, the coordinate time tends to r=2M as t!
1.

Clearly, there is something 
weird about r=2M (the 
Schwarzschild radius) for 
massive particles. But what 
about light rays? Remembering 
that light paths are null so we 
can calculate structure of radial 
light paths. 



Black Holes

Clearly the light cones are distorted, and within r=2M all 
massive particles are destined to hit the origin (the central 
singularity). In fact, once within this radius, a massive particle 
will not escape and is trapped (and doomed)!
But how do we cross from inside to outside?

We can calculate the 
gradients of light rays 
from the metric

Again, light curves tell 
us about the future of 
massive particles.



Eddington-Finkelstein
While Eddington figured out the solution in the early 1900s, 
but it was Finkelstein in the late 1950s who rediscovered the 
answer. Basically, we will just make a change of coordinates;

And the Schwarzschild metric can be written as

The geometry is the same, but the metric now contains off-
axis components. But notice now that the metric does 
nothing weird at r=2M (but still blows up at r=0).  



Eddington-Finkelstein
Light rays are still null, so we can find the light cones

Clearly, v=const represents a null geodesic (and these are 
ingoing rays). There is another that can be integrated;

http://casa .colorado. edu/~ajsh/

So, the change in coordinates 
removes the coordinate 
singularity and now light (and 
massive particles) happily fall in.



Eddington-Finkelstein
To create this figure, 
we define a new time 
coordinate of the form;

This straightens in-
going light rays 
(making it look like 
flat space time). 

However, outgoing 
light rays are still 
distorted.



White Holes
Another coordinate 
transformation can straighten 
outgoing light rays.

The result is a white hole and 
massive particle at r<2M are 
destined to be ejected and 
cannot return.

Note that while this is still the 
Schwarzschild solution, this 
behaviour is not seen in the 
original solution.



Collapse to a Black Hole
Consider the collapse of a pressureless 
(dust) star. The surface of the will 
collapse along time-like geodesics. We 
know that the proper time taken for a 
point to collapse to r=0 is

While the Schwarzschild metric blows up 
at the horizon, the E-F coordinates remain 
finite and you can cross the horizon.

Once across the horizon, the time to the 
origin is

Which is 10-5s for the Sun.



Collapse to a Black Hole
Remember that in E-F coordinates, outgoing light rays move 
along geodesics where

Let’s consider an emitter at (vE,rE) and receiver at (vR,rR). If the 
receiver is at large distances, then the log term can be 
neglected. When the emitter is close to r=2M the log term 
dominates. For the distant observer then

Where t is the Schwarzschild time coordinate (which will 
equal the proper time of the observer as the spacetime far 
from the hole is flat).



Collapse to a Black Hole
Keeping the dominant terms, the result is

As r!rE, tR!1. Photons fired off at regular intervals of proper 
time are received later and later by the observer. 

These photons are also redshifted. If the photons are emitted 
at regular intervals of  (proper time) then



Collapse to a Black Hole
Remembering that the frequency of the emitted and received 
photons are inversely related to the ratio of the emitted and 
received time between photons, then

So the distant observer sees the surface of the star 
collapsing, but as it approaches r=2M it appears to slow and 
the received photons become more and more redshifted. 

The distant observer never sees the surface cross the 
Schwarzschild radius (or horizon) although we see from the 
E-F coordinates, the mass happily falls through.



Kruskal-Szekeres 
We can take the game of changing coordinates even further 
with Kruskal-Szekeres coordinates. Starting again with the 
Schwarzschild metric, and keeping the angular coordinates 
unchanged, the new coordinates are given by

Where c & s are cosh & sinh with the first combination used for 
r>2M and the second for r<2M. We also find that 



Kruskal-Szekeres
The resultant metric is of the form



Kruskal-Szekeres

Lines of constant t are straight, while those at constant r are 
curves. Light cones are at 45o, as in flat spacetime. We have 
our universe, plus a future singularity (black hole) and past 
singularity (white hole). There also appears to be another 
universe over to the left. 



Kruskal-Szekeres 
We can examine the radial 
infall of matter in these 
coordinates. The distant 
observer moves along a line 
of constant radius, while the 
matter falls in emitting 
photons. Again, the distant 
observer sees the photons 
arriving at larger intervals 
and never sees the matter 
cross the horizon. 

Note that once inside the 
horizon, the matter must hit 
the central singularity.



Penrose
Penrose mapped the 
Kruskal coordinates 
further, such that now 
we get two entire 
universes on a single 
page. This is an example 
of maximal 
compactification.
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