Anomalies, Conformal Manifolds, and Spheres

Nathan Seiberg
Institute for Advanced Study

Jaume Gomis, Po-Shen Hsin, Zohar Komargodski, Adam Schwimmer, NS, Stefan Theisen, arXiv:1509.08511
CFT Sphere partition function $\log Z$

• Power divergent terms are not universal. Can be removed by counterterms like $\Lambda^d \int \sqrt{\gamma} + \Lambda^{d-2} \int \sqrt{\gamma} R + \cdots$

• In addition
 – for odd d $\log Z = -F$ is universal (ambiguity in quantized imaginary part due to Chern-Simons terms – depends on framing)
 – for even d $\log Z = C \log(r \Lambda) - F$.

 • C is universal (in $2d$ it is $c/3$ and in $4d$ it is $-a$)
 • F is not universal; it can be absorbed in a local counterterm, $\int \sqrt{\gamma} E_d F$ with E_d the Euler density

• Used in c-theorem and its generalizations, entanglement entropy, ...
Conformal manifolds

• $S = S_0 + \int \lambda^i O_i(x)$ is an exactly marginal deformation

• Family of CFTs labeled by coordinates λ^i

• Metric on the conformal manifold – the Zamolodchikov metric

$$\langle O_i(x) O_j(0) \rangle = \frac{g_{ij}(\lambda)}{|x|^{2d}}$$

• Focus on $d = 2$ (later $d = 4$)
Conformal manifolds of 2d (2,2) SCFT

• Typical example: sigma models with Calabi-Yau target space.
• In string theory the coordinates on the conformal manifold are the moduli – massless fields in 4d
 – 2d chiral fields λ
 – 2d twisted chiral fields $\tilde{\lambda}$
• The conformal manifold is Kahler with

$$K = K_c(\lambda, \bar{\lambda}) + K_{tc}(\tilde{\lambda}, \bar{\tilde{\lambda}})$$
2d (2,2) curved superspace

- For rigid SUSY in curved spacetime use supergravity [Festuccia, NS]
- Simplification in 2d
 - (locally) pick conformal gauge $\gamma_{\mu\nu} = e^{2\sigma} \delta_{\mu\nu}$
 - for SUSY (locally) pick superconformal gauge
 - use flat space expressions with explicit σ's
- Two kinds of (2,2) supergravities. In the superconformal gauge they depend on
 - A chiral $\Sigma = \sigma + i a + \cdots$ with $A_\mu = \epsilon_{\mu\nu} \partial^\nu a$ an axial R-gauge field (Lorentz gauge). The curvature is in a chiral superfield $\mathcal{R} = \overline{D}^2 \bar{\Sigma}$. We will focus on this.
 - A twisted chiral $\tilde{\Sigma} = \sigma + i \tilde{a} + \cdots$ with $\tilde{A}_\mu = \epsilon_{\mu\nu} \partial^\nu \tilde{a}$ a vector R-gauge field (Lorentz gauge).
2d (2,2) curved superspace

• In this language the curvature is in a chiral superfield $\mathcal{R} = \overline{D}^2 \Sigma$. It contains $\partial^2 \sigma$.

• To preserve rigid SUSY in a non-conformal theory we need to add terms to the flat superspace Lagrangian.

• Various backgrounds in the literature are easily described, e.g.
 – Topological twist is $\Sigma = 0$, $\bar{\Sigma} = 2\sigma \neq 0$
 – Omega background

\[\bar{\Sigma} = 2\sigma + 2i\epsilon \bar{z} \partial_{\bar{z}} (2\sigma + \log \bar{z}) \bar{\theta}^2 \]
2d (2,2) curved superspace

– Supersymmetry on S^2 [Benini, Cremonesi; Doroud, Gomis, Le Floch, Lee] is achieved with (suppress r dependence)

\[
\Sigma = - \log(1 + |z|^2) + \theta^2 \frac{i}{1+|z|^2}
\]

\[
\bar{\Sigma} = - \log(1 + |z|^2) + \bar{\theta}^2 \frac{i}{1+|z|^2}
\]

– $\bar{\Sigma}$ is not necessarily the complex conjugate of Σ.
(2,2) sphere partition functions

• [Benini, Cremonesi; Doroud, Gomis, Le Floch, Lee] placed a nonconformal gauged linear sigma model on a sphere with

\[
\Sigma = -\log(1 + |z|^2) + \theta^2 \frac{i}{1+|z|^2}
\]

\[
\bar{\Sigma} = -\log(1 + |z|^2) + \bar{\theta}^2 \frac{i}{1+|z|^2}
\]

• This theory flows in the IR to a nonlinear sigma model with Calabi-Yau target space.

• They computed \(Z \) of the IR theory using localization in the UV theory.
(2,2) sphere partition functions

- Amazing conjecture [Jockers, Kumar, Lapan, Morrison, Romo]: this S^2 partition function is

\[Z = r^{c/3} e^{-K_c(\lambda,\bar{\lambda})} \]

(restoring the radius r, whose power reflects the ordinary conformal anomaly).

Similarly, using $\tilde{\Sigma}$ it is $Z = r^{c/3} e^{-K_{tc}(\tilde{\lambda},\bar{\tilde{\lambda}})}$.

- Proofs based on localization, squashed sphere, tt^*, twisting, counterterms and properties of the background [Gomis, Lee; Gerchkovitz, Gomis, Komargodski; ...].
Questions/confusions

• Given that the one point function of a marginal operator vanishes, how can the sphere partition function depend on λ?
• Why is it meaningful?
 – Can add a local counterterm $\int \sqrt{\gamma} \ R \ f(\lambda, \bar{\lambda})$, making the answer non-universal
• In an SCFT on the sphere there is no need to add terms to the Lagrangian to preserve SUSY
 – Why does it depend on the background Σ?
 – If it does not, what determines whether we used Σ or $\tilde{\Sigma}$ to find e^{-Kc} or e^{-Ktc}?
 – Where is the freedom in Kahler transformations?
• What’s the conceptual reason for it? Is it UV or IR?
Conformal manifolds and anomalies (w/o SUSY)

Zamolodchikov metric \(\langle O_i(x) \, O_j(0) \rangle = \frac{g_{ij}(\lambda)}{|x|^4} \)

In momentum space \(\int e^{ipx} \langle O_i(x) \, O_j(0) \rangle \sim g_{ij}(\lambda)p^2 \log(\mu^2/p^2) \)

Dependence on the scale \(\mu \) leads to a conformal anomaly: with position dependent \(\lambda \) (suppressed coefficients) [Osborn; Friedan, Konechny]

\[T_\mu^\mu = c \, R + g_{ij}(\lambda) \partial_\mu \lambda^i \, \partial^\mu \lambda^j + \ldots \]

Ordinary conformal anomaly

A more subtle anomaly (actually, less subtle)
More about anomalies

• The partition function Z is a nonlocal functional of the background fields (the metric $\gamma_{\mu\nu}$, exactly marginal couplings λ^i, background gauge fields, etc.).

• Its variation under changing the conformal factor $\delta_\sigma \log Z$ is an integral of a local functional of the background fields and $\delta \sigma$.

• $\delta_\sigma \log Z$
 – Must be coordinate invariant in spacetime (assume that the regularization preserves it, i.e. $T_{\mu\nu}$ is conserved also at coincident points)
 – Must be coordinate invariant in the conformal manifold
 – Must obey the Wess-Zumino consistency conditions
 – In SUSY theories it must be supersymmetric
More about anomalies

• A term in $\delta_\sigma \log Z$ that is a Weyl variation of a local term is considered trivial.

• An anomaly is a “cohomologically nontrivial” term.
 – It cannot be removed by changing a local counterterm.
 – It cannot change by changing the renormalization scheme.

• Therefore, even though it arises due to a short distance regulator, it is universal – it does not depend on the choice of regulator.
Returning to conformal manifolds and anomalies (w/o SUSY)

\[
\langle O_i(x) \, O_j(0) \rangle = \frac{g_{ij}(\lambda)}{|x|^4}
\]

\[
\int e^{ipx} \langle O_i(x) \, O_j(0) \rangle \sim g_{ij}(\lambda)p^2 \log(\mu^2/p^2)
\]

leads to [Osborn; Friedan, Konechny]

\[
\delta_\sigma \log Z \sim \int \sqrt{g} \, \delta \sigma \left(c \, R + g_{ij}(\lambda) \, \partial_\mu \lambda^i \, \partial^\mu \lambda^j + \ldots \right)
\]

Ordinary conformal anomaly A more subtle anomaly
Conformal manifolds and anomalies (w/o SUSY)

Another possible anomaly in 2d
$$\delta_\sigma \log Z \sim \int \sqrt{\gamma} \delta \sigma \epsilon^{\mu\nu} B_{ij}(\lambda) \partial_\mu \lambda^i \partial_\nu \lambda^j$$
can be ruled out as follows.

$$\langle O_{i_1} (p_1) O_{i_2} (p_2) \cdots \rangle = \log \mu^2 \delta (\sum p_i) A_{i_1 i_2} \cdots + \cdots$$

where \cdots are finite.

$A_{i_1 i_2} \cdots$ is a second order polynomial in the momenta.

Set e.g. $p_3 = p_4 = \cdots = 0$ and find

$$A_{i_1 i_2} \cdots = p_1^2 \partial_{i_3} \partial_{i_4} \cdots g_{i_1 i_2}.$$

Therefore, all these anomalies are generated from the metric and there is no “B-field” anomaly.
Warmup: $2d \mathcal{N} = 1$

- The conformal manifold is parameterized by real superfields λ^i.
- The anomaly should be expressed in superspace – need to use curved superspace.
- Use the superconformal gauge – the conformal factor σ is in a real superfield Σ and the curvature is in $\mathcal{R} = D^2 \Sigma$.
- The anomaly $\delta_\sigma \log Z \sim \int \sqrt{\gamma} \, \delta \sigma \left(c \, R + g_{ij}(\lambda) \, \partial_\mu \lambda^i \, \partial^\mu \lambda^j + \cdots \right)$ is supersymmetrized in the superconformal gauge as $\delta_\Sigma \log Z \sim \int d^2 \theta \, \delta \Sigma \left(c \, D^2 \Sigma + g_{ij}(\lambda) \, D_+ \lambda^i \, D_- \lambda^j + \cdots \right)$

Ordinary conformal anomaly

A more subtle anomaly

- Ambiguity due to a local counterterm $\int d^2 \theta \, \mathcal{R} \, f(\lambda)$ prevents us from making any statement about Z.
The conformal manifold is parameterized by chiral superfields λ^i and twisted chiral superfields $\tilde{\lambda}^{\bar{a}}$.

The anomaly should be expressed in superspace – need to use curved superspace.

Focus on the supergravity, where the conformal factor σ is in a chiral superfield Σ and the curvature is in a chiral superfield $\mathcal{R} = \bar{D}^2 \Sigma$.

(2,2) SCFT
The supersymmetrization of the anomaly
\[
\delta_{\sigma} \log Z \sim \int \sqrt{\mathbb{V}} \, \delta \sigma \left(c \, R + g_{i\bar{i}} \partial_{\mu} \lambda^{i} \partial^{\mu} \bar{\lambda}^{\bar{i}} + \tilde{g}_{a\bar{a}} \partial_{\mu} \tilde{\lambda}^{a} \partial^{\mu} \bar{\tilde{\lambda}}^{\bar{a}} \right)
\]
after gauge fixing is
\[
\delta_{\Sigma} \log Z \sim \int d^{4} \theta \, (\delta \Sigma + \delta \bar{\Sigma}) \left(c \, (\Sigma + \bar{\Sigma}) + K_{c} (\lambda, \bar{\lambda}) - K_{tc} (\tilde{\lambda}, \bar{\tilde{\lambda}}) \right)
\]
The first term can also be written as \(c \int d^{2} \theta \, \delta \Sigma \, R + c. \, c. \).

- Lack of “B-anomaly” proves that \(K \) is such a sum of two terms.

- Invariance under Kahler transformations of \(K_{tc} (\tilde{\lambda}, \bar{\tilde{\lambda}}) \) by \(\bar{f} (\tilde{\lambda}) \) and of \(K_{c} (\lambda, \bar{\lambda}) \) by \(f (\lambda) \) up to a variation of a local counter term
\[
\int d^{4} \theta \delta \Sigma \, \bar{f} (\tilde{\lambda}) = \int d^{2} \theta \, \delta R \, f (\lambda).
\]

- Alternatively, Kahler invariance, involves a shift \(\Sigma \to \Sigma + \frac{1}{c} f (\lambda) \).
(2,2) SCFT

With an axial R-symmetry the supersymmetry current multiplet $J_{\pm \pm}$ is a real superfield satisfying (slightly simplified)

$$\bar{D}_{\mp} J_{\pm \pm} = \mp D_{\pm} \mathcal{W}$$

with chiral \mathcal{W}.

In an SCFT $\mathcal{W} = 0$ at separated points, but the anomaly sets a contact term

$$\mathcal{W} = \bar{D}^2 \left(c \Sigma + K_c (\lambda, \bar{\lambda}) - K_{tc} (\tilde{\lambda}, \tilde{\bar{\lambda}}) \right) =$$

$$= c \mathcal{R} + \bar{D}^2 \left(K_c (\lambda, \bar{\lambda}) - K_{tc} (\tilde{\lambda}, \tilde{\bar{\lambda}}) \right)$$

- It is invariant under Kahler transformations provided we also shift $\Sigma \rightarrow \Sigma + \frac{1}{c} f (\lambda)$.
Ambiguities

• In the superconformal gauge the local terms are expressed in terms of the chiral curvature superfield $\mathcal{R} = \overline{D}^2 \Sigma$.

• Terms that depend on Σ not through \mathcal{R} are non-local.

• Therefore, the anomaly is not a variation of a local term.

• Freedom in the local term

$$\int d^2 \theta \ R \ f(\lambda) + c.c. = \int d^4 \theta \ \overline{\Sigma} f(\lambda) + c.c.$$

with holomorphic $f(\lambda)$ leads to freedom in Kahler transformations of $K_c(\lambda, \overline{\lambda})$. (It can be absorbed in a shift of Σ.)

• Other than that, the anomaly is unambiguous.
The anomaly in components

For a purely conformal variation $\delta \Sigma = \delta \sigma$ the anomaly is

$$\delta \Sigma \log Z \sim \int d^4 \theta \left(\delta \Sigma + \delta \Sigma \right) \left(c (\Sigma + \Sigma) + K_c (\lambda, \bar{\lambda}) - K_{tc} (\bar{\lambda}, \bar{\lambda}) \right)$$

$$= \int \left[\delta \sigma \left(c \Box \sigma + g_{ii} \partial_{\mu} \lambda^i \partial_{\mu} \bar{\lambda}^i + \tilde{g}_{\alpha \bar{\alpha}} \partial_{\mu} \tilde{\lambda}^\alpha \partial_{\mu} \tilde{\lambda}^{\bar{\alpha}} \right) - \Box \delta \sigma K_c (\lambda, \bar{\lambda}) \right]$$

The last term leads to

$$\log Z \sim \int \sqrt{\gamma} R K_c (\lambda, \bar{\lambda}) + \ldots$$

and hence on S^2

$$Z = r^{c/3} e^{-K_c}$$

Q.E.D.
The anomaly in components

For a purely conformal variation $\delta \Sigma = \delta \sigma$ the anomaly is

$$\delta \Sigma \log Z \sim \int d^4 \theta \left(\delta \Sigma + \delta \bar{\Sigma} \right) \left(c \left(\Sigma + \bar{\Sigma} \right) + K_c(\lambda, \bar{\lambda}) - K_{tc}(\bar{\lambda}, \bar{\lambda}) \right)$$

$$= \int \left[\delta \sigma \left(c \Box \sigma + g_{i\bar{i}} \partial_\mu \lambda^i \partial_\mu \bar{\lambda}^{\bar{i}} + \tilde{g}_{a\bar{a}} \partial_\mu \tilde{\lambda}^a \partial_\mu \bar{\tilde{\lambda}}^{\bar{a}} \right) \right.$$

$$- \Box \delta \sigma K_c(\lambda, \bar{\lambda}) \left. \right]$$

The last term leads to

$$\log Z \sim \int \sqrt{\gamma} R K_c(\lambda, \bar{\lambda}) + \ldots$$

Without SUSY this term is not universal. It is the variation of the local counterterm $\delta \Sigma$. With SUSY it is related to the universal term and hence it is meaningful.
Kahler invariance

\[Z = r^{c/3} e^{-K_c} \]

- Kahler transformations of \(K_c \) can be absorbed in a local counter term.
- Alternatively, full Kahler invariance when \(\Sigma \) is also shifted. With this interpretation \(Z \) is invariant under the combined transformation

\[K_c \rightarrow K_c + f(\lambda) + \bar{f}(\bar{\lambda}) \]

\[r \rightarrow r e^{\frac{3}{c}(f(\lambda)+\bar{f}(\bar{\lambda}))} \]
Extensions

• Trivial to repeat with $\tilde{\Sigma}$ and to find K_{tc}.
 – Here we choose the contact terms to preserve the vector R-symmetry – use the other (2,2) supergravity.
 – Equivalently, we use a different regulator that preserves the supergravity of $\tilde{\Sigma}$.

• $2d$ $\mathcal{N} = (0,2)$
• $4d$
 – $\mathcal{N} = 1$
 – $\mathcal{N} = 2$
• The conformal manifold is parameterized by chiral superfields λ^i.
• The conformal factor σ is in a chiral superfield Σ and the curvature is in a chiral superfield $\mathcal{R}_- = \partial_{--}\bar{D}_+\bar{\Sigma}$.
• Several possible anomalies including:
 – The ordinary anomaly
 $$i\int d\theta^+ c \delta\Sigma \mathcal{R}_- + c.c. = i\int d^2\theta^+ c \delta\Sigma \partial_{--}\bar{\Sigma} + c.c.$$
 – The anomaly associated with the metric
 $$i\int d^2\theta^+ (\delta\Sigma + \delta\bar{\Sigma})(K_i \partial_{--}\lambda^i - K_i \partial_{--}\bar{\lambda}^i)$$
 – ...
\[2d \mathcal{N} = (0,2) \]

– The anomaly associated with the metric
\[i \int d^2 \theta^+ \left(\delta \Sigma + \delta \bar{\Sigma} \right) \left(K_i \partial_{--} \lambda^i - K_{\bar{i}} \partial_{--} \bar{\lambda}^{\bar{i}} \right) \]

– Using the lack of “B–anomaly”
\[i \int d^2 \theta^+ \left(\delta \Sigma + \delta \bar{\Sigma} \right) \left(K_i \partial_{--} \lambda^i - K_{\bar{i}} \partial_{--} \bar{\lambda}^{\bar{i}} \right) = i \int d^2 \theta^+ \left(\delta \Sigma + \delta \bar{\Sigma} \right) \left(\partial_i K \partial_{--} \lambda^i - \partial_{\bar{i}} K \partial_{--} \bar{\lambda}^{\bar{i}} \right) \]

with real \(K \).

– Hence, the metric on the conformal manifold must be Kahler.

– The last term includes in its component expansion \(\square \delta \sigma K \) and could lead to an interesting \(Z \). But…
Ambiguities in $2d\ \mathcal{N} = (0,2)$

- As in all our examples, a local counterterm
 \[i\int d\theta^+ \mathcal{R} f(\lambda) + c.c. = i\int d^2\theta^+ \partial_-\bar{\Sigma} f(\lambda) + c.c. \]
 with holomorphic $f(\lambda)$ – Kahler transformations of K.

- Can redefine the 2d metric by a function of the moduli.
 - Locally a chiral superfield is the same as a real superfield (not in (2,2)). Hence, in the conformal gauge we can shift (more carefully, use SUGRA)
 \[\Sigma \to \Sigma + \frac{i}{\partial_+} \bar{D}D_H(\lambda, \bar{\lambda}) . \]
 - This shifts the ordinary anomaly term
 \[i\int d^2\theta^+ \delta\Sigma \partial_-\bar{\Sigma} \to i\int d^2\theta^+ \delta\Sigma \partial_-\bar{\Sigma} + i\int d^2\theta^+ \delta\Sigma \partial_-\bar{H} , \]
 which includes in components $\Box\delta\sigma H$.
 - Hence, Z is ambiguous (note, there is no local counterterm).
4d

- Without SUSY
 - Anomaly $\int \sqrt{\gamma} \, \delta \sigma (a E_4 - c W^2 + g_{ij} \Box \lambda^i \Box \lambda^j + \cdots)$
 - Ambiguous counterterms
 $\int \sqrt{\gamma} \left(R^2 F_1(\lambda) + R_{\mu\nu}^2 F_2(\lambda) + R_{\mu\nu\rho\sigma}^2 F_3(\lambda) + \cdots \right)$

- With SUSY need to
 - Supersymmetrize – in $\mathcal{N} = 1, 2$ σ and λ in chiral superfields.
 - Covariantize in spacetime
 - Covariantize in the conformal manifold
4d $\mathcal{N} = 1$

- Anomaly
 \[\int \sqrt{\gamma} \delta \sigma (a E_4 - c W^2 + g_{i \bar{i}} \lambda^i \bar{\lambda}^{\bar{i}} + \cdots) \]

- Ambiguous counterterms
 \[\int \sqrt{\gamma} \left(R^2 F_1(\lambda, \bar{\lambda}) + R_{\mu \nu}^2 F_2(\lambda, \bar{\lambda}) + R_{\mu \nu \rho \sigma}^2 F_3(\lambda, \bar{\lambda}) + \cdots \right) \]

- Can be supersymmetrized and then the local counterterm makes the sphere partition function ambiguous [Gerchkovitz, Gomis, Komargodski].
$4d \mathcal{N} = 2$

- Example: theories of class S with moduli λ

- After a lot of algebra (using relevant formulas in the literature) the expressions without SUSY are supersymmetrized and covariantized to

$$\int \sqrt{\gamma} \delta \sigma \left(a E_4 + g_{i \bar{i}} \lambda^i \square \bar{\lambda}^{\bar{i}} + \cdots \right) + \sqrt{\gamma} K(\Box^2 \delta \sigma + \cdots)$$

Universal

Without SUSY this is not universal, but SUSY relates it to this and hence it is universal.
Key fact,

– In $\mathcal{N}=1$ the counterterm that is proportional to the curvature square is an arbitrary function of λ and $\bar{\lambda}$.

– In $\mathcal{N}=2$ the counterterm that is proportional to the curvature square must be holomorphic in λ.

– Therefore, here the ambiguity is only in a holomorphic function of λ.

– Only Kahler transformations of K.

4d $\mathcal{N} = 2$

• Collecting all the terms $\log Z \sim \int \sqrt{\gamma} E_4 K + \cdots$ and

\[Z = r^{-a} e^{K(\lambda, \bar{\lambda})/12} \]

Ordinary conformal anomaly The more subtle anomaly

• This reproduces a result of [Gerchkovitz, Gomis, Komargodski; Gomis, Ishtiaque]
Conclusions

• Anomaly under conformal transformations when the coupling constants depend on position
 – Unrelated to supersymmetry
 – This is a UV phenomenon
 • Visible on flat \mathbb{R}^d
 • Independent of the background

• Supersymmetry restricts
 – the form of the anomaly
 – the ambiguity due to local counterterms
Conclusions

• In 2d $\mathcal{N} = (2,2)$ the S^2 partition function depends on the anomaly.
 – New derivation of
 $$Z = r^{c/3} e^{-Kc}$$
 • The usual conformal anomaly
 • The more subtle conformal anomaly
 – Addresses the questions/confusions we raised...
Conclusions

• Addresses the questions/confusions we raised
 • One point function nonzero because of a term in the operator proportional to the curvature (like in the dilaton)
 • Z can be unambiguous when the counterterm proportional to the curvature depends holomorphically on the couplings.
• Dependence on Σ due to an anomaly. Different choices lead to K_c or K_{tc}.
• The anomaly is set in the UV and is detected by the sphere (IR).
Conclusions

• Three step process
 – the anomaly
 – the ambiguity (freedom in counterterms)
 – the sphere

• Other cases
 – $2d \mathcal{N} = 1$ ambiguous
 – $2d \mathcal{N} = (0,2)$ ambiguous
 – $4d \mathcal{N} = 1$ ambiguous
 – $4d \mathcal{N} = 2$ $Z = r^{-a} e^{K/12}$