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Chapter 1

Introduction and Overview

The observation of gravitational waves (GWs) is expected to open a new window on the

universe within the following decade. First generation GW detectors (InLIGO, VIRGO,

TAMA, GEO) are already operating at or close to their design sensitivity levels and the

development of the next advanced-sensitivity GW detectors (Advanced LIGO, Advanced

Virgo, LCGT) and the space-detector LISA are well underway. The community is eagerly

waiting for the “first light” to show up in the datastreams; up to the present day, no

GWs detections have been yet reported. It is now increasingly important to assess the

spectrum of possibilities that this phenomenon entails for astronomy and astrophysics,

and to fully understand the precise characteristics of the gravity waveforms that we

expect to observe. In addition to its fundamental theoretical importance, the research

in the emerging field of GW astronomy also helps to tune technical developments of GW

detection facilities. My PhD research focuses on three different fields in gravitational

wave astronomy: (1) standard sirens, (2) GW parameter estimation, and (3) GW event

rate computation. I elaborate the main motivations and provide a brief overview of the

previous related works to my studies below.

Standard sirens are supermassive black hole (SMBH) merger events that produce

both gravitational and electromagnetic (EM) radiation. The spectrum of the EM waves

allows to determine the redshift, while the measurement of gravitational radiation gives

direct independent information on the luminosity distance of the source. Combining

these information, standard sirens are capable of probing the cosmological model of

the universe, but to higher redshifts and with different systematics than the analagous

type-Ia supernova standard candles. Moreover, the secure identification of the EM

counterpart to even a single GW event could be also useful to improve our understanding
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2 Introduction and Overview

of the SMBH accretion physics and to clarify the role of gas as a catalyst in SMBH

mergers. A joint GW-EM analysis could, in principle, determine the masses and orbital

parameters of the SMBH binary and yield a precise measurement of the Eddington ratio,

L/LEdd, which will supply a key parameter in studies of the evolution of the BH/quasar

population. Finally, the comparison of the EM variability with the GW-kick and spin

observables would give new insights to BH accretion physics. For all of these reasons the

observation of standard sirens are among the key goals of the planned LISA instrument.

In fact, the results of my analysis have already made an impact on the LISA design, and

have been included in the Science Requirements of the LISA Proposal.

Previously, it has been argued (Vecchio, 2004) that the GW source localization accu-

racy corresponding to the LISA measurement is too poor, and the identification of such

EM counterparts will be difficult because there will be too many counterpart candidates

to choose from. However, Vecchio (2004) associated counterparts with host galaxies

and galaxy clusters, and used only the 2D angular positioning information for the anal-

ysis. I improved previous analyses by accounting for the full 3D spatial information

by using the redshift of an EM counterpart candidate in relation with the luminosity

distance determined by LISA and I focused on quasars as plausible counterparts. With

these specifications, one can expect that a specific counterpart can be uniquely deter-

mined. Another possibility I have examined is to monitor the sky for EM counterparts

in real time, even as the SMBH inspiral proceeds. Arguably, searching for a variable or

transient EM signal, produced during the GW emitting phase, could be one of the most

efficient ways to uniquely identify EM counterparts. Indeed, the exact nature of any such

“prompt” counterpart is difficult to predict ab initio. The presence of gas is believed to

be necessary to allow the coalescence of the binary on pc scales within a Hubble time

(Escala et al., 2004). If one or both SMBHs continues to accrete gas in the GW-emitting

stage, the coalescing binary may shine as a bright quasar (Armitage & Natarajan, 2002;

Kocsis et al., 2006), with potential variability on a timescale of hours to days, owing to

the inspiraling orbital motion of the binary. I have examined whether the LISA detector

can constrain the position of the GW event to a precision that an EM counterpart be

observed.

Aside from the astrophysical significance, this work is also important for the funda-

mental theory of GW parameter estimation. Unlike regular telescopes, the GW instru-

ments are sensitive to sources from all directions on the sky and to all of the intrinsic

parameters describing the sources. The development of data processing techniques on

separating individual GW events from instrumental and astrophysical noise, is an out-
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standing task. Once the waveform of a given physical event has been separated, the

various physical parameters describing the event have to be disentangled. Given the

characteristics of the existing and planned GW instruments, and the theoretical expec-

tations on GW sources, it is possible to obtain the expected error covariance of the

physical parameter estimators. I have analyzed this problem to understand whether the

early inspiral phase of SMBH binary mergers can be used to forcast the time and three

dimensional position of the merger, before the merger actually happens. I was looking to

find whether the parameter estimator covariance matrix has a special structure for the

LISA GW instrument, and to see how it changes in time as the observation proceeds.

Such a special structure can be expected due to the geometry of the motion of LISA, as

it orbits around the Sun. This motion adds a periodic modulation to the waveform with

a much smaller frequency than the GW carrier signal. Previous works (e.g. Berti et al.,

2005a; Holz & Hughes, 2005; Hughes, 2002a; Vecchio, 2004) made no use of this spe-

cial structure, and therefore were limited by computational resources. After devising a

new algorithm and a new approximation scheme, such limitations can be hoped to be

overcome, which has been the second driving goal of my research.

Finally, I have conducted research on the expected event rates of GWs. On the

verge of the first direct GW detection, it is especially important to analyze the detection

capabilities of the existing and planned GW detectors and to estimate the rates and

characteristics of potentially detectable GW signals. There is already a considerable list

of possible detection candidates (for a review see Cutler & Thorne, 2002): the inspiral

of neutron star (NS) or black hole (BH) binaries, the tidal disruption of NS by BH

in NS–BH binaries, BH–BH merger and ringdown, low-mass X-ray binaries, pulsars,

centrifugally hung-up proto neutron stars in white dwarf accretion-induced collapse,

supernova core collapse, gamma ray bursts, and the stochastic background.

In my thesis, I consider an additional possibility, GWs produced by unbound orbits.

Among unbound orbits near-parabolic encounters (PEs) produce gravitational radiation

with typical frequencies appropriate for detection with terrestrial facilities. For close PEs

the gravitational radiation is short and intensive, that is observable to large distances.

Parabolic encounters are primarily expected to occur in very dense environments of

compact objects like galactic nuclei and globular clusters, but very little attention had

been paid to any of these cases in the previous literature. In my pioneer study, I have

considered the latter possibility and estimated the expected event rate of detections for

specific current and near-future GW detectors. The most interesting aspect of these

studies is that the resulting event rates are very sensitive to the model parameters.
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Therefore the comparison of these estimates with observations with GW instruments

in the future will make it possible to put stringent constraints on the composition and

distributions of compact object populations of these systems.

The thesis is organized into three main segments described above. In Chapter 2, I de-

rive expectations on locating the quasar counterparts of standard sirens. In Chapter 3, I

present an analysis of the premerger localization of gravitational-wave inspirals. In Chap-

ter 4, I discuss the detection rates of parabolic encounters. Finally, in Chapter 5 I draw

the concluding remarks and summarize the most important findings in an itemized list

of theses. Each of the chapters are written to be self-complete and can be comprehended

individually without the necessity of reading the remainder of the Thesis. The various

chapters of the thesis are based on the publications: Kocsis, Frei, Haiman, & Menou

(2006); Kocsis, Gáspár, & Márka (2006); Kocsis, Haiman, Menou, & Frei (2007); and

Kocsis, Haiman, Menou, & Frei (2007).



Chapter 2

Locating the Quasar Counterparts of

Standard Sirens

2.1 Introduction

One of the main objectives of the Laser Interferometric Space Antenna (LISA), to be

launched around the year 2018 (Danzmann & Rüdiger, 2003), is to detect the gravita-

tional wave (GW) signals associated with coalescing supermassive black holes (SMBH)

at cosmological distances. The LISA detector is designed to be particularly sensitive in

the frequency range between (3× 10−5 − 10−4)Hz ∼< f ∼< 0.1Hz, allowing the detection

of binary coalescences with total masses between 104 and 107 M⊙ out to high redshifts.

The limiting redshift depends on several factors (such as the orientation of the spins and

orbital plane of the SMBH binary, and its location on the sky relative to LISA), and is

expected to lie between z∼ 5 − 10 (Hughes, 2002b). A comparison of the gravitational

waveform with the anticipated detector noise can be used to estimate the accuracy with

which LISA will be able to extract the physical parameters of the coalescence events

(Barack & Cutler, 2004b; Holz & Hughes, 2005; Hughes, 2002b; Vecchio, 2004). Of par-

ticular interest, in the context of searching for electromagnetic (EM) counterparts, is

whether the spatial location of the GW event can be localized to within a sufficiently

small three-dimensional volume. In this chapter, I determine the probability of finding a

unique EM counterpart within the expected error volume associated with SMBH merger

events, for a range of masses and redshifts.

It has been argued by Vecchio (2004) that the identification of such EM counterparts

5



6 Locating the Quasar Counterparts of Standard Sirens

will be difficult because, in typical cases, there will be too many counterpart candidates

to choose from. However, Vecchio (2004) associated counterparts with host galaxies and

galaxy clusters, and used only the 2D angular positioning information for the analysis.

In contrast, here I account for the 3D spatial information by using the redshift of an elec-

tromagnetic counterpart candidate in relation with the luminosity distance determined

by LISA and I focus on quasars as plausible counterparts. With these specifications, I

shall demonstrate that in some cases, a specific counterpart can be uniquely determined.

If electromagnetic counterparts to LISA events exist, they will likely be related to the

accretion of gas onto the SMBHs involved in the coalescence. Provided this accretion

is not supply-limited, bright quasar counterparts approaching the Eddington luminosity

would then be expected. A few additional arguments favor this scenario: galaxy merg-

ers in hierarchical scenarios of structure formation are expected to deliver a significant

amount of gas to the central regions of the merging galaxies (Barnes & Hernquist, 1992),

and this gas may play a catalyst role in driving SMBH coalescence (Begelman et al.,

1980; Escala et al., 2004; Gould & Rix, 2000). Ultimately, however, many of the com-

plex processes involved remain poorly understood. For example, Armitage & Natarajan

(2002) have argued that, in the limit of a small mass ratio of the two SMBHs, a

prompt and luminous electromagnetic signal may be expected during coalescence, while

Milosavljevic & Phinney (2005) have argued that in the limit of equal mass SMBHs,

only a much delayed electromagnetic afterglow would be expected. All “cosmological

standard sirens” may thus not be equal in their potential for electromagnetic counter-

parts. 1 My working assumption in the present study is that bright quasar activity is

a plausible electromagnetic counterpart to LISA events. This allows us to quantify the

feasibility of an unambiguous identification of such a counterpart. As I shall see below,

the search for the counterparts will allow a test of the assumption, as well.

The secure identification of the EM counterpart to even a single GW event could

be useful in different ways: (1) to improve our understanding of the SMBH accretion

physics, (2) to clarify the role of gas as a catalyst in SMBH mergers and (3) to supply

an independent constraint on the background cosmology. A joint GW – EM analysis

could, in principle, determine the masses and orbital parameters of the SMBH binary,

and yield a precise measurement of the Eddington ratio, L/LEdd, which will supply a

key parameter in studies of the evolution of the BH/quasar population (Haiman & Loeb,

1998; Haiman & Menou, 2000; Kauffmann & Haehnelt, 2000; Small & Blandford, 1992;

1The name “standard sirens” was suggested by Sterl Phinney and Sean Carroll (Holz & Hughes,
2005).
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Wyithe & Loeb, 2003). This parameter is currently poorly known (constrained by indi-

rect empirical correlations; Vestergaard 2004, Woo & Urry 2002, Kaspi et al. 2000). The

values range from ≈ 0.1 to ∼> 1, with indications that higher-z quasars may be closer to

LEdd than the z∼ 0 quasars. Likewise, a joint GW – EM analysis could, in principle, be

used to estimate cosmological parameters (Schutz, 1986), by comparing the luminosity

distance (which is a direct observable by GWs) with the redshift (as inferred from the

spectrum of the counterpart – in this case, a quasar). This would serve as a complement

to constraints from the luminosity distance to high-z type Ia Supernovae (SNe), but

with different systematic errors, and with the potential of extending to higher redshifts.

New constraints, spanning the range 0 < z < 2, would be particularly well–suited to

probe the properties of dark energy, which is expected to become dynamically dominant

within this cosmic epoch.

This chapter is organized as follows. In Section 2.2, I summarize my method to

estimate the angular and radial positioning errors expected from LISA, for SMBHs

with a range of masses at different redshifts. In Section 2.3, I discuss the conversion

of the luminosity distance, as determined by LISA from the GW signal alone, to the

redshift of the source. In particular, I discuss the uncertainty in the resulting redshift

estimate. In Section 2.4, I discuss my estimates for the number of quasars that may

be found in the 3D error volume provided by LISA, based on the luminosity function

and clustering properties of known optical quasars. In Section 2.5, I present the main

results, and show that for typical low-redshift GW events discovered by LISA, a unique

quasar counterpart may be identified. In Section 2.6, I point out various implications

of a successful identification and discuss several caveats to this conclusion. Finally,

in Section 2.7 I summarize the conclusions. Unless stated otherwise, throughout this

chapter I assume a standard cold–dark matter cosmology (ΛCDM), with (ΩΛ, ΩM , Ωb,

H0) = (0.70, 0.30, 0.047, 70 km s−1 Mpc−1), consistent with the recent results from the

Wilkinson Microwave Anisotropy Probe (WMAP)(Spergel et al., 2003) and the Sloan

Digital Sky Survey (SDSS) (Tegmark et al., 2004a).

2.2 Localizing LISA events

A few studies have been carried out so far to address how accurately LISA will mea-

sure the source parameters of a coalescing pair of SMBHs. In general, the accuracy

depends on a large number of parameters: a total of 17 parameters in the most general
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Table 2.1. LISA measurement errors

δM/M δµ/µ δdL/dL δΩ

best 0.8× 10−5 2× 10−5 2× 10−3 0.01 deg2

typical 2× 10−5 9× 10−5 4× 10−3 0.3 deg2

worst 0.8× 10−3 0.1 2× 10−2 3 deg2

Note. — Assumed SMBH binary parameters: m1 =
m2 = 106M⊙ and z = 1.

case include 2 red-shifted mass parameters, 6 parameters related to the BH spin vec-

tors, the orbital eccentricity, the luminosity distance, 2 angles identifying the position

on the sky, 3 angles that describe the orientation of the orbit, a reference time, and a

reference phase. Due to the resulting computational limitations, various studies have

concentrated on small portions of the parameter space. The most up–to–date calcula-

tions estimating parameter uncertainties for SMBH in-spirals have been carried out by

Berti et al. (2005a); Holz & Hughes (2005); and by Vecchio (2004). As compared to pre-

vious studies, Vecchio (2004) accounts for the effects of spins, and shows that parameter

estimation errors improve significantly (by a factor of 3–10 for high spins) for selected

parameters. Vecchio (2004) also adopts an optimistic LISA sensitivity curve, by adopt-

ing the smallest observable frequency to be ∼ 3 times lower than previous estimates and

only considers cases with equal mass SMBHs. My analysis, which relies on Vecchio’s

estimates, is therefore approximate to this extent.

For concreteness, I adopt the parameter uncertainties obtained by Vecchio (2004)

for an equal-mass SMBH binary with m1 = m2 = 106M⊙ at redshift z = 1. The

uncertainties vary as a function of the fiducial orientation of the source relative to LISA,

and are primarily influenced by the BH spin magnitudes (i.e. higher spins lead to

smaller uncertainties). Here I distinguish three cases. In the “best” case, I adopt the

errors that correspond to the 10th percentile of the distribution of uncertainties obtained

by Vecchio (2004) for high BH spins (with dimensionless spin a = S/M2 = 0.9, where

S is the magnitude of the total spin and M is the total mass). In the “typical” case, I

adopt the errors corresponding to the 50th percentile in the case of moderate BH spins,
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with a = 0.5. In the “worst” case, I adopt the 90th percentile of the no spin case (a = 0).

Note that SMBHs are generally expected to be spinning fast (e.g. Volonteri et al. 2005),

so that our “best” case may actually be representative of a fair fraction of events. In

Table 2.1, I list the errors on the chirp and reduced masses, M = (m1m2)
3/5/(m1+m2)

1/5

and µ = (m1m2)/(m1+m2) respectively, and on the GW source location (i.e. luminosity

distance, dL, and solid angle, Ω), for these three cases of interest.

In Vecchio (2004), parameter errors have only been estimated for a single choice of

an equal–mass SMBH binary with total mass M0 = m1 +m2 = 2× 106M⊙ and redshift

z0 = 1. Starting from this result, I crudely estimate the uncertainties δdL and δΩ for

other combinations of masses and redshifts as follows. First, note that the luminosity

distance is simply proportional to the inverse of the signal amplitude. Therefore its

estimator depends primarily on the total signal power, rather than on the specific shape

of the signal waveform2. The luminosity distance error would then obey the simple

scaling

δdL(M, z)

dL(M, z)
=

[
SNR(M, z)

SNR(M0, z0)

]−1
δdL(M0, z0)

dL(M0, z0)
(2.1)

where SNR(M, z) is the expected value of the signal to noise ratio of the detection,

SNR 2(M, z) = 4

∫ fisco(Mz)

fa(Mz ,∆T )

h∗(f,Mz , z)h(f,Mz, z)

Sn(f)
df. (2.2)

Here, Mz = (1 + z)M is the red-shifted total mass, h(f,Mz, z) denotes the Fourier de-

composition of the signal detected by LISA, and Sn(f) is the RMS noise density per fre-

quency interval (including instrumental and confusion noise, Barack & Cutler 2004b3).

A crucial parameter for high Mz values inscribed in Sn(f) is the low frequency wall of

the detector, which is further discussed below. The integration bound fisco(Mz) corre-

sponds to the innermost stable circular orbit (ISCO), beyond which the gravitational

waveform is not well known, and fa(Mz,∆T ) is the arrival frequency a time ∆T before

the ISCO is reached by the coalescing binary (see Vecchio 2004 for details). Through-

out this chapter, I fix the observation time of SMBH binaries at ∆T = 1 yr, unless a

binary is so massive or at such a high redshift that it is not observable by LISA for a

full year and then ∆T < 1 yr. Note that h(f,Mz, z) depends on other parameters, such

2The signal power also scales with the red-shifted chirp mass as M5/6
z . However, this parameter can

be determined independently to high precision, from the phase information.
3For the instrumental noise, instead of the approximation of Barack & Cutler (2004b), I use the

more exact sensitivity curve available at http://www.srl.caltech.edu/˜ shane/sensitivity/.
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as the angular momentum vector orientation relative to LISA’s arms, the magnitude

of spins, etc. (see Vecchio 2004 and references therein). For this estimate I calculate

the SNR with the leading order (i.e. Newtonian) contribution. The resulting depen-

dence of the signal–to–noise ratio on BH masses and redshift are shown in Figure 2.1.

The figure shows that the sensitivity degrades significantly for distant sources, and also

that it peaks in the mass range of 105 − 106 M⊙, which produce GWs near the optimal

frequencies within the LISA band.

Figure 2.1 Relative signal–to–noise ratio (SNR) for LISA detections of the in-spiral
phase of equal–mass supermassive black hole coalescences, as a function of total mass,
M , and redshift, z. A 1–year observation is assumed and the normalization is for
M = 2× 106 M⊙ and z = 1.

The other important parameter, the angular position, is extracted from the change

in the relative orientation of LISA during its orbit around the Sun. Since LISA’s orbital

time–scale is much longer than the inverse of the signal frequency, it is plausible to

assume that the angular position uncertainty decouples from the intricate waveform,

and improves linearly with the signal amplitude. This assumption is consistent with

Fig. 1 of Berti et al. (2005c) which shows that the inclusion of spin-orbit and spin-spin

terms modifies the waveforms but does not alter the angular resolution. In fact, the

angular resolution is shown to be independent even for alternate theories of gravity (e.g.

scalar-tensor and massive graviton theories). Thus, similar to equation (2.1), I estimate
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the mass and redshift dependence of the positioning solid-angle error as

δΩ(M, z) =

[
SNR(M, z)

SNR(M0, z0)

]−2

δΩ(M0, z0), (2.3)

where the −2 exponent assumes that the uncertainty in this two–dimensional quantity

is the product of independent uncertainties in the one-dimensional azimuthal and polar

angles.

A limitation of the above analysis at the high–mass end of the range of SMBHs is that

these events may not be visible for a full year, due to the low–frequency noise wall, below

which LISA looses sensitivity. For instance, for Mz > 9× 106M⊙ (1.3× 106M⊙), the low

frequency noise wall at 0.03mHz (0.1mHz) is crossed less than 0.25yr before reaching

the ISCO. At higher masses or redshifts, therefore, the angular information, which is

inscribed in a modulation with a 1yr period, becomes significantly harder to disentangle

from other parameters, such as dL, and the errors estimated from the SNR alone by

equations (2.1) and (2.3) become less accurate. In this regime, a better approximation

to the scaling of the errors is ∝ (∆T/1 yr)−1/2 ×SNR−1, where ∆T ≤ 1 yr is the time

elapsed from the moment the binary appears at the low–frequency wall to the moment

it reaches the ISCO (Hughes 2005, private communication; see Holz & Hughes (2005)

for a more detailed treatment and discussion).

2.3 Localizing the Counterparts

I next consider how to use the three–dimensional spatial localization of the SMBH merger

event by LISA. The solid angle error box directly yields the two–dimensional angular

position error on the sky, in which any EM counterpart will be located. However,

an additional step is necessary to convert the luminosity distance, dL, measured by

LISA into a redshift, z, which is the relevant observable for the EM counterpart. With

a particular choice of cosmological parameters pi = (H0,ΩM ,ΩDE , w), I can directly

convert a redshift to a luminosity distance (see equation (2.4) below), and vice–versa.

One may then envision the following strategy: given the precision with which pi are

known from other observations, one can estimate the redshift, and restrict the search for

counterparts within the redshift shell corresponding to the LISA-measured luminosity

distance, dL. If a counterpart is uniquely identified within this redshift shell, and its

redshift can be determined precisely, then one could hope for an improved measurement
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of the dL(z) relation, and hence a refined determination of the cosmological parameters.

The first step in this exercise is to determine the expected redshift of the source.

Apart from the errors on the cosmological parameters and on the measurement of dL,

the peculiar velocity of the source relative to the Hubble flow, and its magnification due

to weak gravitational lensing by inhomogeneities in the distribution of mass along the line

of sight, introduce two additional sources of errors. In summary, the redshift uncertainty

will thus include a combination of uncertainties from (i) the LISA luminosity distance,

(ii) the cosmological parameters, (iii) peculiar velocities, and (iv) weak gravitational

lensing magnification.

Hughes (2002b) made a simplified estimate of the redshift error, without peculiar

velocities or gravitational lensing distortions, assuming a flat cosmology with a cosmo-

logical constant (assuming ΩM ≡ 1 − ΩΛ and w ≡ −1), and ignoring correlations with

other cosmological parameters. Here, I extend that study by using a general form of dark

energy (relaxing the w prior), by taking into account the various parameter correlations,

and by including errors due to peculiar velocities and gravitational lensing.

To begin, I recall the luminosity distance to a source at a fixed comoving coordinate

in a smooth Friedmann universe,

dL(z, pi) = (1 + z)c

∫ z

0

dz′

H(z′, pi)
, (2.4)

where

H(z, pi) = H0

√
ΩM(1 + z)3 + ΩDE(1 + z)3(1+w). (2.5)

I ignore spatial curvature and set Ωk = 0, in line with previous studies and as suggested

by recent WMAP data. For a source with a small but non–zero radial peculiar velocity,

v, equation (2.4) is modified, and the luminosity distance is given by

dL(z, pi, v) = dL[zv, pi, 0], (2.6)

where ∆z ≡ zv − z = (1 + z)v/c is the additional apparent redshift due to the peculiar

motion. In an inhomogeneous universe, sources along different lines of sight can suffer

different amounts of gravitational lensing magnification µ. If µ denotes the magnification

of the signal power, then the GW amplitude, and thus the inferred value of d−1
L , scales
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as µ1/2. For a line of sight that suffers a magnification µ, equation (2.6) is modified as

dL(z, pi, v, µ) =
1√
µ
dL[zv, pi, 0, 0]. (2.7)

In the limit of weak lensing µ1/2 ≃ 1 + κ, where κ ≪ 1 denotes the weak lensing

convergence (see below).

Taking the variation in both sides of equation (2.7), I obtain

δdL = −dLκ +
∂dL

∂z
δz +

∂dL

∂v
v +

∑

i

∂dL

∂pi

δpi, (2.8)

Solving for δz, taking the square and the expectation value of both sides, and using the

fact that the LISA measurement, the peculiar velocities, and the cosmological uncer-

tainties are independent, i.e. 〈δpiδdL〉 = 〈v δdL〉 = 〈κ δdL〉 = 〈v δpi〉 = 〈κδpi〉 = 〈κv〉 = 0

for all i, I find

〈δz2〉 =

(
∂dL

∂z

)−2 (
〈δd2

L,LISA〉 + 〈δd2
L,cosm〉 + 〈δd2

L,pec〉 + 〈δd2
L,wl〉

)
(2.9)

or equivalently,

〈δz2〉 = 〈δz2
LISA〉 + 〈δz2

cosm〉 + 〈δz2
pec〉 + 〈δd2

wl〉, (2.10)

where the notation was introduced to distinguish the intrinsic LISA measurement er-

ror, δdL,LISA, from the error resulting from cosmological parameters 〈δd2
L,cosm〉, peculiar

velocities 〈δd2
L,v〉, and weak lensing magnification 〈δd2

L,wl〉. I now discuss each of these

terms, whose forms and magnitudes follow directly from equation (2.7).

2.3.1 Cosmological Uncertainties

The cosmological term in equation (2.9) is

〈δd2
L,cosm〉 =

∑

i,j

∂dL

∂pi

∂dL

∂pj
〈δpi δpj〉, (2.11)

where dL and its derivatives are to be evaluated using equation (2.4), at the fiducial

values of the cosmological parameters pi, and for v = κ = 0. In order to place LISA

in the context of other experiments planned in the next decade, I compute 〈δd2
L,cosm〉
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from the covariance matrices 〈δpi δpj〉 expected from two future cosmological probes:

Planck4 (assumed to have measured the temperature and polarization anisotropies of

the cosmic microwave background), and the Large Synoptic Survey Telescope, LSST5

(assumed to have measured the power spectrum and redshift distribution of ∼ 100, 000

galaxy clusters). I adopt the forecasts for the Fisher matrices for these experiments by

Wang et al. (2004). Their analysis assumes a flat background universe with 6 free pa-

rameters (ΩDE, ωM , w, ωb, ns, σ8) where ωM ≡ ΩMh
2 ≡ (1 − ΩDE)h2 defines the Hubble

parameter. Note that the luminosity distance does not explicitly depend on ns and σ8,

but they are included here, since they couple to the other four parameters as determined

by Planck and LSST (and hence increase the uncertainties on these other four parame-

ters). The fiducial parameters are (0.73, 0.14,−1, 0.024, 1, 0.9), respectively (consistent

with WMAP; Spergel et al. 2003). Since the two observations are independent, I simply

sum up the two individual Fisher matrices; the covariance matrix, 〈δpi δpj〉, is obtained

by taking the inverse of the Fisher matrix. In order to substitute in equation (2.11), it

is necessary either to revert to the original cosmological parameters (H0,ΩDE ,ΩM , w)

in the correlation matrix, by performing an orthogonal transformation in the param-

eter space6, or to simply write dL(z, pi) of equation (2.4) in terms of the parameters

(ΩDE , ωm, w) and evaluate the partial derivatives in equation (2.11) as a function of

these parameters. Following either approach, I find 〈δd2
L,cosm〉1/2/dL = 1.7× 10−3 for

z = 1. For comparison, I performed the same analysis using the Fisher matrices of

WMAP (using only temperature anisotropies) and SDSS (using the power spectrum of

the luminous red galaxies, together with the galaxies in the main SDSS survey, and

following Hu & Haiman 2003 for redshift binning, mass limit, and sky coverage). I find

〈δd2
L,cosm〉1/2/dL = 1.1× 10−2 for z = 1 in that case.

The luminosity distance error corresponds to a redshift error according to equa-

tion (2.9). Note that equation (2.11) depends on the fiducial redshift through the dL

derivatives. This dependence of the redshift error is shown as a long–dashed curve in Fig-

ure 2.2, along with other sources of redshift errors. The luminosity distance at z ≈ 1000

is measured very accurately by Planck, and its evolution is essentially unaffected by the

cosmological parameters down to dark-energy domination at z ∼< 2. The figure shows

that, as a result, the relative cosmological error 〈δz2
cosm〉1/2/z reaches a constant value

beyond z ∼> 2. The figure also shows that the cosmology error becomes smaller than the

typical LISA uncertainty at z ∼> 0.7. I find that, even for the best–case LISA events,

4See www.rssd.esa.int/index.php?project=PLANCK
5See www.lsst.org
6The parameters δΩM and δΩDE will be fully anti-correlated, because of the assumption of flatness.
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the cosmology error becomes sub–dominant at z ∼> 1.

Figure 2.2 Errors on the inferred redshift of an electromagnetic counterpart to a LISA
coalescence event, for m1 = m2 = 106M⊙. The intrinsic LISA error on the luminosity
distance, dL, is shown as a solid line for the two scalings δdL/dL ∝ SNR−1 (“LISA–a”)
and δdL/dL ∝ ∆T−1/2 ×SNR−1 (“LISA–b”). Errors due to the peculiar velocity of
the source (for v = 500 km s−1; short–dashed line), uncertainties on the background
cosmology (long–dashed line), and weak lensing magnification (dash–dotted line) are
also shown (see text for details).

2.3.2 Peculiar Velocities

Equations (2.6), (2.8), and (2.9) yield, to first non-vanishing order in v/c, the uncertainty

due to peculiar velocities, as a simple function of the r.m.s. peculiar velocity of the GW

sources,

〈δd2
L,pec〉/d2

L =

[
1 +

c(1 + z)2

H(z)dL

]2 〈v2〉
c2

. (2.12)

I are assuming here that GW events correspond to luminous quasars, and unfortu-

nately, the r.m.s. peculiar velocity of high-redshift quasars is not known empirically. I
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therefore employ theoretical predictions for the peculiar velocities of (quasar–host) galax-

ies within dark matter haloes. According to numerical simulations (e.g. Cen & Ostriker

2000), typical values are ∼ 500 km s−1, with a tail extending to ∼ 1000 km s−1. As an

approximation, I assume that the scaling with redshift follows the linear growth in the

amplitude of density perturbations, multiplied by the linear bias of the halos. Under this

assumption, I find that for fixed halo mass, the typical peculiar velocity evolves very

little from z∼ 0 to z∼ 1. This conclusion is consistent with the semi-analytic model

of Hamana et al. (2003), which shows essentially no evolution (only a modest decrease

from z∼ 0 to z∼ 0.8). Therefore, I substitute v∼ 500 km s−1 in equation (2.12) at z∼ 1,

yielding an error of 〈δd2
L,pec〉1/2/dL = 4.1× 10−3. The corresponding redshift r.m.s. error

contribution (equation (2.10)) for v∼ 500 km s−1 is shown as a function of redshift in

Figure 2.2 (short–dashed curve). The figure shows that the peculiar velocity error is

lower than the typical LISA error for z ∼> 1.

Note that the r.m.s. peculiar velocity equals ∼ 500 km s−1 in the most typical

cases, but its exact value depends on the specific mass of the halo, Mhalo, embedding

the quasar (Hamana et al., 2003), smaller Mhalo implying lower velocities. For a specific

source, Mhalo can be estimated directly, using the number of galaxies that cluster around

the identified quasar (Kauffmann & Haehnelt, 2002). The r.m.s. peculiar velocity error

may then be estimated for this particular source, and may be somewhat lower/higher

than the value shown in Figure 2.2, depending on whether the source is located in a

galaxy–poor/galaxy–rich environment.

2.3.3 Weak Gravitational Lensing

The gravitational lensing term in equation (2.9), in the weak-lensing limit, is given by

〈δd2
L,wl〉/d2

L = 〈κ2〉, (2.13)

where κ denotes the r.m.s. effective convergence (e.g., White & Hu 2000). While the

mean magnification is well approximated by 〈κ〉 = 0 or 〈µ〉 = 1, the magnification dis-

tribution has a substantial width. The full distribution is given by Wang et al. (2002),

and its variance reaches ∼ 12% for sources at z = 2 (Dalal et al., 2003). Here I use equa-

tion (6) in White & Hu (2000) to compute the variance in effective convergence, 〈κ2〉, for

point sources. This quantity is given by an integral over the matter power spectrum, and

receives a contribution from small, non–linear scales. I employ the HALOFIT routine of



Locating the Quasar Counterparts of Standard Sirens 17

Smith et al. (2003), and set the input cosmological parameters according to my conven-

tion (see Section 2.1). This routine encodes an accurate fitting formula for the matter

power spectrum extending into the nonlinear regime. For z = 1, I find 〈κ2〉1/2 = 3.1%.

Weak lensing errors can, in principle, be improved by “corrective lenses” (Dalal et al.,

2003), i.e. background galaxy shear maps, and using the cross-correlation between the

magnification of a point source and the shear map smoothed on larger–scales. However,

Dalal et al. (2003) found that the magnification errors can be improved by only a small

amount, less then 20% relative to the uncorrected errors for a source at z = 2.

A different approach for reducing weak lensing magnification uncertainty would be to

directly measure the inhomogeneities in the mass distribution along the line of sight. If

this distribution could be directly probed down to a scale of kmin, then the contributions

to κ from all scales down to kmin could be directly subtracted from the uncertainty on

the magnification. If the counterpart is indeed a quasar, then the line-of-sight density

distribution could, in principle, be probed by studying its Lyman α absorption spectrum,

as well as deep surveys of galaxies and clusters in the foreground and near the line of sight.

At low redshifts (z∼ 0.5) which contribute significantly to the lensing magnification, the

X-ray absorption forest (Fang & Canizares, 2000; Perna & Loeb, 1998) could provide

additional information on the density fluctuations.

I leave a detailed assessment of the amount of correction that could be feasible to

future investigations. However, to estimate the “target” scale at which the fluctuations

would need to be measured in order to be useful as a lensing correction, I make the

(unrealistically optimistic) simplifying assumption that the matter fluctuations above a

certain length scale, and the corresponding contribution to lensing magnification, have

been perfectly determined. The fluctuations on smaller scales, with k > kmin, then

determine the only remaining weak-lensing uncertainty. Therefore, I truncate the inte-

gral over the wavenumber (see equation (1) in Dalal et al. 2003) at kmin. The resulting

fractional improvement in 〈κ2〉1/2 (which equals δdL,wl/dL) is plotted in Figure 2.3. The

improvement is about 8%, 20%, and 40% for kmin = 1, 3, and 10Mpc−1, respectively

- i.e., about half of the weak lensing uncertainty is from length–scales ∼< 2π/kmin ∼ 0.6

Mpc. The Lyman α transmission spectra of SDSS quasars have been used to determine

the power spectrum down to scales of k∼ 3Mpc−1, implying that the spectral resolution

would need to be improved by a factor of ∼ 3 to allow significant improvements.

The uncorrected weak-lensing redshift uncertainty δzwl ≡ (∂dL/∂z)
−1〈δd2

L,wl〉1/2 is

shown in Figure 2.2. The plot clearly shows that weak lensing errors typically exceed
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1% and dominate the other redshift errors for z > 0.5.

Figure 2.3 The relative improvement in the weak lensing magnification–induced redshift
uncertainty to a background source. I show the fractional improvement that can be
achieved by perfectly measuring density inhomogeneities down to a fixed scale. The
x-axis shows the minimum wave number that is unmapped (larger scale fluctuations are
assumed to be perfectly known along the line of sight to the source). Various curves
correspond to sources at z = 1, 2, 3, and 4 (from bottom to top).

2.3.4 The Size and Orientation of the Error Volume

In Figure 2.2, I compare the contributions from four different sources of redshift er-

rors: 〈δz2
LISA〉1/2, 〈δz2

pec〉1/2, 〈δz2
cosm〉1/2, and 〈δz2

wl〉1/2 for SMBH masses m1 = m2 =

106M⊙. Weak lensing errors are dominant for 5 ∼> z ∼> 0.5. The LISA redshift er-

ror is shown for both scalings δdL/dL ∝ SNR−1 (labeled “LISA–a”) and δdL/dL ∝
(∆T/1 yr)−1/2 ×SNR−1 (labelled “LISA–b”). These curves separate if the total max-

imum mass satisfies Mz > 3.92× 106M⊙, since in this case the maximum observation

time ∆T decreases under 1 yr. The other three sources of errors are within a factor of

two of one another at z = 1, for typical LISA sources and peculiar velocities.

The total redshift uncertainty then follows from summing the uncertainties in quadra-

ture, equation (2.10). The result for m1 = m2 = 106 M⊙ and z = 1 is δz = 2.57%, 2.59%,

and 3.03% in the cases I labeled as best, typical, and worst, respectively. Note that I
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have not explicitly added an error due to the instrumental resolution of a spectrograph,

because this is often much better than this value (e.g. for SDSS7, the redshift resolution

is between 10−3 and 10−4).

I next use these redshift uncertainties to derive the three–dimensional error volume,

δVtot, in which the EM counterparts need to be identified. The comoving volume corre-

sponding to the above redshift uncertainties, combined with the solid–angle uncertainty

〈δΩ2〉1/2, is

δVtot =
∂2V

∂z∂Ω
〈δz2〉1/2〈δΩ2〉1/2. (2.14)

Substituting the solid–angle errors from Table 2.1, I find δVtot = 2.1× 103, 6.3× 104,

and 7.4× 105Mpc3 for the same three cases.

Equation (2.14) should be regarded as a simple estimate of the volume that needs

to be searched. The 2D uncertainty 〈δΩ2〉1/2 was obtained by a Fisher analysis, and

represents the solid area of a 2D error ellipse. This equation then gives the volume of a

cylinder with a height of 〈δz2〉1/2. The arguably more appropriate volume of an ellipsoid

whose third semi–axis is 〈δz2〉1/2 would be a factor of 4/3 larger. On the other hand,

equation (2.14) also naively assumes that δz and δΩ are uncorrelated – i.e., it describes

an error ellipsoid whose z axis is oriented along the line of sight. The angular position

is estimated by LISA from the GW signal alone, and is therefore indeed uncorrelated

with the radial uncertainties due to cosmology, lensing, or peculiar velocities. However,

the luminosity distance estimate from LISA itself is strongly correlated with its angular

positioning (Hughes, 2002b), which results in an error ellipse that is ’tilted’ relative to

the line of sight, and has a smaller overall volume than the simple orthogonal product

in equation (2.14) would imply.

I have utilized the correlation matrices for the LISA distance and angle estimates

given in Table 1 and 2 of Hughes (2002b) for m1 = m2 = 105M⊙ at z = 1 and m1 =

m2 = 104M⊙ at z = 7, to estimate the reduction in the total error volume due to these

correlations. Note that this analysis applies only to the LISA uncertainties. Among

the 11 free parameters in Hughes (2002b), the 3D error volume is determined by the

parameters related to the spherical coordinates of the sources: ln dL, µS = cos θS, and

φS. The error volume δVtot quoted in equation (2.14) above corresponds to (3/4th

of) the volume of an ellipsoid whose semi-axes are the marginalized errors in spherical

coordinates; the true error volume δVell is that of the ellipsoid described by the full

7http://cas.sdss.org/dr3/en/tools/search/sql.asp



20 Locating the Quasar Counterparts of Standard Sirens

covariance matrix. The ratio δVell/δVtot depends on the actual position angle (θS, φS)

of the source; averaging over all angles, I find 〈δVell/δVtot〉 = 0.31 (0.20) for masses

m1 = m2 = 105M⊙ (104) at redshift z = 1 (7).

If LISA errors dominated the total redshift uncertainty 〈δz2〉1/2, this implies that the

correlations could reduce the mean number of counterparts by a factor of 3–4. However,

as discussed above, the total uncertainty is likely going to be dominated by weak lensing

errors; hence the inclusion of the correlations would reduce the final error volume only

by a small factor (∼ 15%). I make no use of this reduction in the results I quote below.

2.4 Quasar Counterparts

To estimate the typical number of quasar counterparts to a specific SMBH merger event,

I combine the size, δVco, of the comoving LISA error box with the space density of

quasars, by integrating over the quasar luminosity function, φ(L, z):

N = b δVco

∫ Lmax

Lmin

dL φ(L, z), (2.15)

where b accounts for the bias due to the clustering of quasars, and Lmin and Lmax are the

minimum and maximum quasar luminosities which could be associated to the specific

SMBH merger event. I use Lmin = 0.1LEdd and Lmax = 2LEdd, where LEdd denotes

the Eddington luminosity for the total BH mass. Motivations behind this particular

near-Eddington choice are further discussed below.

2.4.1 Luminosity Function of Quasars

I adopt the standard empirical double power–law fit to the quasar luminosity func-

tion of the combined quasar samples from the Two-Degree Field (2dF) and Sloan Dig-

ital Sky Survey, with pure luminosity evolution valid for z < 2.1 (Croom et al., 2005;

Richards et al., 2005). Unfortunately, these surveys extend only to relatively bright

magnitudes (B ∼< 21), corresponding to the Eddington luminosity of BHs with mass

M ∼> 3× 107 M⊙ for z = 1, which is above LISA’s optimal mass–range. In order to

estimate the number of quasar counterparts for lower BH masses, I extrapolate the

luminosity function to the faint end.
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A limitation of this luminosity function is the simple quadratic fitting formula for the

evolution (Croom et al., 2005; Richards et al., 2005), which is only valid for redshifts

z < 2.1. To avoid these difficulties Madau et al. (1999) (hereafter MHR) proposed a

more complicated empirical fitting formula with three adjustable parameters zs, ζ , and

ξ. These parameters were estimated using high-z quasars, and were improved to include

the high-redshift SDSS sample and weak-lensing effects (Wyithe & Loeb, 2002). I obtain

a luminosity function that is more precise at lower redshifts and is concordant with

the redshift scaling by fitting the MHR model to the Richards et al. (2005) luminosity

function in the interval 0.5 < z < 2.1 and keeping the high–redshift asymptote at the

Wyithe & Loeb (2002) value. The result is L∗ = 5.06× 1010L⊙, zs = 1.66, ζ = 2.6,

and ξ = 2.8. Other parameters in the luminosity function that are independent of the

evolution are adopted from Richards et al. (2005): βl = 1.45, βh = 3.31, and Φ∗
L =

1.99× 10−6Mpc−3.

2.4.2 Clustering of Quasars

The bias, b, in equation (2.15) describes the enhancement in the number of quasars

around a specific quasar being the potential counterpart, relative to the value for a

homogeneous distribution. The clustering depends only weakly on quasar luminos-

ity (Adelberger & Steidel, 2005; Lidz et al., 2006). I use the observed autocorrela-

tion function of quasars from the 2dF survey (Croom et al., 2005), ξ(s) = (s/s0)
γ for

s > 0.1h−1Mpc (assuming no quasars with a smaller separation), where s0 = 5.48h−1Mpc

(5.55) and γ = 1.20 (1.63) for s < 25Mpc (¿25Mpc), respectively. The bias is given by

the average value of 〈1+ξ(t)〉 over the comoving error box. Assuming that the error box

is a cylinder, with height δy = cδz/H(z) (which is the comoving distance along the line of

sight corresponding to the redshift error) and radius δr =
√
δVco/(πδy) (corresponding

to the angular uncertainty of LISA):

b =

∫ δr

0
2πrdr

∫ δy

0
dy (1 + ξ(

√
y2 + r2))

∫ δx

0
2πrdr

∫ δy

0
dy

. (2.16)

I find b = 1.50, 1.23, and 1.07, for my best, typical, and worst cases, respectively. The

corresponding comoving cylinder heights are δy = 62.5, 62.9, and 73.8 Mpc, and the

cylinder radii are δr = 3.3, 17.8 and 56.4 Mpc.
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Table 2.2. Survey characteristics

Survey Mmin Limiting mag Sky cov. Observing

(z = 1) M⊙ deg2

2dFa(2QZ,6QZ) 3× 107 bJ < 20.85 750 1997-2002

SDSSb(LRG) 2× 108 i < 19.1 7× 103 1998-2005

Deep2c 5× 105 R < 24.5 4 2002-04

AGESd 1× 107 R < 21.5 9 2004-06

DESe 7× 105 AB < 24.7 5× 103 2009-13

LSSTf 2× 105 AB < 26.5 1.8× 104 2012

aTwo-Degree Field, see http:/www.2dfquasar.org/

bSloan Digital Sky Survey, see http:/www.sdss.org/

cSee http:/deep.berkeley.edu/

dAGN and Galaxy Evolution Survey, covers radio, IR, optical, and
X-ray bands, see http:/cmb.as.arizona.edu/∼ eisenste/AGES/

eDark Energy Survey, see http:/cosmology.astro.uiuc.edu/DES/ and
http:/decam.gnal.gov/

fLarge Synoptic Survey Telescope, see http:/www.lsst.org/
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2.5 Results

The main results are presented in Figure 2.4, which shows 〈N〉, the average number of

counterparts within the 3D LISA error volume, for various total masses M and redshifts

z. Recall that I have assumed that the GW event is always accompanied by quasar

activity. According to my definition, 〈N〉 then corresponds to the mean number of

quasars that would be found in LISA’s error box, in addition to the quasar actually

associated with the GW source. A straightforward identification of a unique counterpart

therefore requires that there be no additional quasars in the error volume and that

the EM observation sensitivity goes below the actual counterpart luminosity (so that

the presence of fainter quasars can be ruled out). A simple criterion for a reasonable

chance not to have any additional counterparts candidates is 〈N〉 < 1.8 I find that

this simple condition is satisfied in the case of a “typical” event at z = 1 with total

masses ∼ 4× 105 M⊙ or ∼ 8× 106 M⊙. At higher redshifts, the average number of

potential counterparts will be much larger, due mostly to the increasing weak lensing

errors. At z ∼> 3, even the best case events will typically have at least one additional

quasar in their error box. On the other hand, the increase from z = 3 to z = 5

in the number of quasars located in the error-box is partly mitigated by the drop in

the abundance of quasars at z ∼> 3. The three panels of Figure 2.4 display results

for various presumptions of uncertainties. The top left panel uses raw, uncorrected

weak-lensing errors and the counterpart luminosity is allowed to vary in a broad range

0.1 < L/LEdd < 2. The top right panel accounts for a 20% reduction of weak-lensing

errors, and the luminosity is restricted to 0.7 < L/LEdd < 1.3. The bottom panel shows

results for the more conservative scaling of LISA errors, δdL/dL ∝ ∆T−1/2 ×SNR−1 and

∂Ω ∝ ∆T−1 ×SNR−2 if ∆T < 1yr. In all cases at z∼ 1, a unique counterpart may be

identifiable.

One may also interpret the number of counterparts I compute, 〈N〉, together with

the same simple criterion 〈N〉 < 1, in a somewhat different way: as a means to test my

hypothesis that LISA events are accompanied by bright quasar activity. If my hypothesis

is incorrect, then the number of quasars in LISA’s error volume should be drawn from

the random distribution of quasars on the sky, unrelated to the LISA event (excluding

the correction due to correlations that I have included in my analysis; although I found

this correction to be relatively insignificant). In many configurations, I find 〈N〉 ≪ 1,

implying a significant probability that no bright quasars would be found in LISA’s error

8One could explicitly consider the probability distribution for N . For example, for a Poisson distri-
bution, the probability for N = 0 would be 50/90 percent for 〈N〉 = 0.7/0.1.
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volume in these cases. If several LISA events are indeed found with no such quasar

counterparts, it would, by itself, be an important new constraint on the process of

binary black hole coalescence.

The identification of counterparts could be aided by a combined analysis of several

GW events. Every successful identification yields a very precise direct measurement for

the L/LEdd Eddington ratio. Once a statistically significant set of Eddington ratios is

acquired, the empirical distribution can be mapped. It is yet unclear whether SMBH

mergers are expected to have high-luminosity quasar counterparts. Then, in case L/LEdd

is in a narrow range, this information can be used to greatly constrain the a priori

assumptions on the counterpart’s luminosity. As an example, in Figure 2.4 (middle

panel) I consider L/LEdd = 1± 0.3, and find 〈N〉 to decrease well under 1 in the typical

case.

If cosmological uncertainties were to dominate the error budget on a counterpart’s

redshift, a combined analysis could further improve the robustness of the identification.

Indeed, even if each GW event has, by itself, several possible counterparts, each of these

counterparts would require a different set of cosmological parameters. As a result, there

should be, in general, only a single set of cosmological parameters9 that gives a consistent

set of counterparts to all of the GW events (Schutz, 1986). The counterpart candidates

contradicting this concordant set can be discarded. Unfortunately, the error budget is

likely to be dominated by the lensing magnification uncertainty. In this case, having

multiple events is going to be helpful only if a sufficient number (≫ 100) of events are

detected to map out the full distribution of magnifications (such a large number of events

is not expected; see below).

2.6 Discussion

2.6.1 Search Strategy

Different strategies for the search of an electromagnetic counterpart to a LISA event

can be envisioned. The simplest one would be to search, in an existing survey catalog,

for candidates located in the 3D LISA error box. I list the characteristics of several

deep present and near-future surveys in Table 2.2. These surveys cover various bands

9This set, of course, will suffer from the usual degeneracy along the surface of constant luminosity
distance dL(z, ΩΛ, Ωm, h, w).
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Figure 2.4 The average number of quasars in the three–dimensional LISA error volume.
The thin dash–dotted, thick solid, and thin dashed curves trace the “best”, “typical”,
and “worst” cases, respectively. The low–frequency noise wall for LISA is assumed to
be at fmin = 0.03mHz. Top left: Using raw data without any weak-lensing corrections
and the counterpart’s luminosity is assumed to be 0.1 < L/LEdd < 2. Top right: The
weak-lensing errors are corrected by 20%, and the luminosity is assumed to be 0.7 <
L/LEdd < 1.3. Bottom: Same as the top right panel, assuming that LISA uncertainties
scale as δdL/dL ∝ ∆T−1/2 ×SNR−1 and ∂Ω ∝ ∆T−1 ×SNR−2. In most cases at z ∼< 1,
a unique quasar counterpart may be identifiable.
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between 400 and 1100nm. In each case, I calculate the minimum mass of the quasar

corresponding to the magnitude limit of the survey, provided that the quasar is shining

at the Eddington luminosity. For the quasar spectrum I use Madau et al. (1999) and

follow Madau (1995) to account for the Lyman series line blanketing and photoelectric

HI absorption to obtain the apparent luminosity. The portion of the sky covered and

scheduled operation times are also given. The most promising (deepest and largest sky

coverage) among the planned surveys is that from the LSST, scheduled for the same

time as LISA.

A second strategy would be to design a survey specifically aimed at identifying the

counterparts of well–localized LISA events, by observing in detail the 2D angular error

box provided by LISA and looking for the expected counterparts. The time domain

may come to play an important role in the strategy of this type of surveys. Indeed,

for some of the events, one may have, from the LISA data-stream, a reasonably good

idea of the location on the sky of the SMBH binary prior to coalescence. For instance,

Holz & Hughes (2005) estimate that this knowledge may be available with reasonable

accuracy about a day in advance. One would then be able to monitor any unusual

photometric variability associated with the violent SMBH merger in this area some-

what before, during and after the coalescence. Surveying the area long (i.e. months or

years) after the coalescence may also prove useful in discovering the counterpart and/or

monitoring the viscous evolution of any gas surrounding the SMBH merger remnant

(Milosavljevic & Phinney, 2005). The time domain may thus greatly facilitate the iden-

tification of a unique electromagnetic counterpart to some LISA events, even in cases

when many counterpart candidates otherwise exist in the 3D error box.

2.6.2 Uncertainties in the Analysis

Throughout the analysis of LISA uncertainties, I focused on equal mass binaries. With

this simplifying assumption, it was possible to derive approximate scalings as a function

of total mass and relate them to the calculations of Vecchio (2004) form1 = m2 = 106M⊙.

I also find good agreement with the recent calculations of Holz & Hughes (2005) for a

variety of equal-mass combinations. For unequal masses, the GW signal-power depends

to leading order on the simple combination M = µ3/5M2/5, allowing a straightforward

extension of my scaling arguments to more general mass ratios.

As mentioned above, my results depend on the LISA sensitivity curve at low fre-

quencies. In particular, the relationship between the arrival frequency fa(Mz,∆T ), the
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final frequency fisco(Mz), and the LISA minimum frequency noise wall fmin determines

the maximum possible observation time for the in-spiral. The exact value of fmin is

currently assumed to lie between 0.1 and 0.03mHz. Figure 2.4 assumes fmin = 0.03mHz.

In this case, at z = 1, a ∆T = 1yr observation of the in-spiral phase is possible for

M < 2× 106M⊙ but for larger masses, the maximum possible observation time becomes

shorter than a year. I have also computed the number of quasars in the 3D LISA error

box for the higher value of fmin = 0.1mHz. I find a significant increase in this number

at the high–mass end (i.e. for M ∼ 107M⊙), but the results are essentially unaffected for

lower mass SMBHs.

An important assumption in my analysis is the near-Eddington luminosity of the

quasar counterparts associated with LISA events. While this assumption is difficult to

justify from first principles, it is the luminosity expected if SMBH accretion occurs in

a regime which is not supply-limited. Observationally, the Eddington ratio of quasars,

L/LEdd, can be inferred, leading to values from 0.1 to ∼> 1, with higher values at large

redshifts (e.g. Kaspi et al. 2000; Vestergaard 2004; Woo & Urry 2002). This ratio has

been determined for a handful of lower mass SMBHs in AGNs and these sources have

been found to cluster around L/LEdd ∼ 1 as well (Greene & Ho, 2004). Recent work

by Kollmeier et al. (2006) and Hopkins et al. (2006) both suggest L/LEdd is typically

around 1/3.

The restricted luminosity range 0.1 < L/LEdd < 2 assumed in this analysis effec-

tively serves as a 4th (“brightness”) dimension, complementing the three-dimensional

geometrical error volume provided by LISA. According to Table 2.1, for a given event,

the mass estimate provided by LISA is typically very accurate. Therefore, it is through

the range of acceptable Eddington ratios that the integration bounds in equation (2.15)

change. Since the luminosity function decreases rapidly with L, the integral is domi-

nated by the lower bound and is largely independent of Lmax. I chose Lmax = 2LEdd for

concreteness. When modifying the lower bound from Lmin = 0.1LEdd to Lmin = 1.0LEdd

or Lmin = 0.01LEdd, for instance, I find that the number of quasars present in the 3D

LISA error box changes by a factor of 0.1 and 5, respectively.10 Obviously, our need to

extrapolate the quasar luminosity function below the minimum value constrained by the

observations is an additional important source of uncertainty in this analysis, but one

that will be addressed well by future generations of surveys (Table 2.2).

In a recent study, Hennawi et al. (2006) have found a large number of small separa-

10The change is explained by the asymptotic form of the luminosity function Φ(L) ∝ L−1.45 for low
L.
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tion quasars, implying an order-of-magnitude increase in the quasar auto-correlation on

scales ∼< 200h−1 kpc. However, the dimensions of the error volume as I estimated it is

generally much larger (∼ 3.3 Mpc even in the best case). As a result, the average num-

ber of counterparts is changed by a negligible factor by this small–scale auto-correlation:

8.3× 10−3, 3.7× 10−4, and 3.3× 10−5 in the best, typical, and worst case LISA errors.

Increasing the correlation by an order of magnitude out to a scale of 500h−1 kpc would

still cause at most a 6% increase in the mean number of quasars in the best case.

Hennawi et al. (2006) do not find an increase in the correlation beyond ∼ 500h−1 kpc

scales. I note that our inability to identify the correct counterpart from among any rare

ultra-small-separation candidates would not degrade cosmological parameter estimations

significantly. One may also argue that such close–separation binary quasars would better

represent a ’precursor’ stage in the evolution of the two black holes towards an eventual

coalescence. If so, one would not expect them to be associated with GW events, and

they may in fact be anti–correlated with such events.

In this work, I have focused on optical quasars as plausible counterparts to GW

events. It would be interesting to repeat my analysis using other types of “electro-

magnetic objects” that may be associated with SMBH coalescences. For example,

even if gas accretion leads to prodigious energy output in radiation, the optical light

of the quasar may be obscured by the intervening gas and dust near the galactic nu-

cleus. In these cases, the GW events may be more commonly associated with X–ray

quasars (e.g. Milosavljevic & Phinney 2005), or with ultraluminous infrared galaxies

(e.g. Thompson et al. 2005). As these sources are also relatively rare, unique counter-

parts may be identifiable if such objects typically accompany GW events.

2.6.3 Implications: Black Hole Astrophysics

A successful identification of a quasar counterpart to a LISA event would provide power-

ful diagnostics on the physics of SMBH gaseous accretion and the associated radiation.

The masses and spins of the two BHs before merger can be directly determined from the

GW signal, from which the mass and spin of the remnant BH follows at some precision.

In some cases (e.g. Hughes & Menou 2005), the remnant BH could also be observed by

LISA during the post-merger ring-down phase, which would constrain its mass and spin

directly. The orientation of the orbital plane of the BH binary before merger would be

measured as well. All of these parameters are generally unknown for quasars detected

only via traditional electromagnetic techniques.
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The observation and monitoring of quasar counterparts to LISA events may thus

offer us some of the best laboratories for the study of AGN physics. First, the Edding-

ton ratio can be measured to high accuracy (limited only by photometric errors and

bolometric corrections), since LISA estimates for the BH masses are extremely precise

by astronomical standards (see Table 2.1). Second, if the quasar accretes at or near the

Eddington limit, given its Eddington ratio, one may be able to set a useful lower limit on

the radiative efficiency of its accretion flow. If it is in excess of the canonical 10% value,

it will provide an interesting empirical test of the physics of accretion onto a spinning

BH, with a spin directly constrained by the GW measurement. Third, the counterpart

could be monitored for years following the merger to follow the viscous evolution of the

gaseous disk and thus clarify its role in the SMBH coalescence process. Fourth, it is

expected that the gas disk will be forced in the orbital plane of the pre-merger binary

by the Bardeen-Peterson effect (Milosavljevic & Phinney, 2005). Knowing the disk ori-

entation could thus offer tests of the geometry of quasar emission and obscuration (even

after the merger, given the expected spin of the remnant). It may also be possible to

further develop diagnostics related to the geometry of a jet, if present.

2.6.4 Implications: Cosmology

The successful identification of an EM counterpart to a GW event could, in principle,

open the way to use them as “standard sirens” to probe the background cosmology

(Schutz, 1986), analogously to the Ia SNe standard candles (Holz & Hughes, 2005).

The precision on the cosmological model can, however, be improved only if the dL(z)

function is determined to a higher accuracy than it can be already guessed from other

data that exists when LISA is operational. As an example, I have assumed here to have

available the uncertainty from the combined datasets from two future projects, Planck

and LSST. I have found that the major obstacle against a dramatic improvement on

cosmology is the gravitational lensing of intervening matter along the line of sight to a

LISA source. In the weak-lensing limit, the r.m.s. magnification of a source at z = 2

is 12%, leading to a luminosity distance error of 6%. Dalal et al. (2003) have shown

that galaxy shear maps can be used to correct weak-lensing distortion, but only a 20%

relative improvement can be achieved, so that δdL/dL = 5%. I suggest alternatively that

correcting for the contribution of the known distribution of intervening matter might

improve weak lensing uncertainties by another 20%. Furthermore, the weak lensing

uncertainty can be overcome if a large sample of sources is available when fitting dL(z),
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mapping out the magnification distribution. Using a number K of merger events along

with uniquely identified counterparts, the lensing error reduces approximately as 1/
√
K

(although the actual improvement will be less pronounced, due to a non-Gaussian tail

of high magnifications; Holz & Linder 2005; Wang et al. 2002). To reach the Planck +

LSST level of δdL/dL = 10−3, I find that K > 100 events would be required.

Is such a large number of merger events, with uniquely determined electromagnetic

counterparts, expected from the LISA data-stream? Monte-Carlo simulations of SMBH

merger trees generally indicate LISA event rates from ∼ 20–0.5yr−1 for masses MBH ∼<
107 at z∼ 1 (Menou et al., 2001; Micic et al., 2007; Sesana et al., 2004, 2007). Detecting

a total of K = 100 would be barely possible during a 3-year LISA mission lifetime, only

allowing a marginal test of the concordance of cosmological parameters with standard

sirens. In addition, most of these events may be expected to involve SMBHs at the

low–mass end (i.e. ∼< 105M⊙; Menou 2003; Sesana et al. 2004), which are not ideal for

unique counterpart identifications (see Figure 2.4). However, large uncertainties remain

on the expected event rate. For example, Islam et al. (2004) predict much larger rates,

which could open up the possibility of a statistical analysis, folding in the expected weak

lensing magnification distribution.

2.7 Conclusions

In this work, I have considered the possibility that SMBH-SMBH mergers, detected

as gravitational wave sources by LISA, are accompanied by gas accretion and quasar

activity with a luminosity approaching the Eddington limit. Under this assumption, I

have computed the number of quasar counterparts that would be found in the three–

dimensional error volume provided by LISA for a given GW event. I found that weak

lensing errors exceed other sources of uncertainties on the inferred redshift of the elec-

tromagnetic counterpart and increase the effective error volume by nearly an order

of magnitude. Nevertheless, I found that for mergers between ∼ (4× 105 − 107)M⊙

SMBHs at z∼ 1, the error box may contain a single quasar with a B-band luminosity

LB ∼ (1010 − 1011)L⊙. This would make the identification of unique electromagnetic

counterparts feasible, allowing precise determinations of the Eddington ratio of distant

accreting SMBHs, and providing an alternative method to constrain cosmological pa-

rameters.



Chapter 3

Pre-Merger Localization of

Gravitational-Wave Standard Sirens

3.1 Introduction

One of the key objectives of the planned, low-frequency gravitational-wave (GW) de-

tector LISA (Laser Interferometric Space Antenna) is the detection of supermassive

black hole (SMBH) binary mergers at cosmological distances. The observation of these

chirping GW sources would deepen our understanding of (i) general relativity, e.g.

by offering unique tests of spacetime physics in the vicinity of SMBHs (Arun, 2006;

Berti et al., 2006; Dreyer et al., 2004; Hughes & Menou, 2005; Miller, 2004), (ii) cos-

mology, by providing additional constraints on the luminosity distance–redshift relation

(Holz & Hughes, 2005; Hughes, 2002a; Schutz, 1986), (iii) large-scale structure, by in-

directly constraining hierarchical structure formation scenarios (Barnes & Hernquist,

1992; Begelman et al., 1980; Berti et al., 2005b; Menou et al., 2001), and (iv) black hole

astrophysics (Dotti et al., 2006; Kocsis et al., 2006; Milosavljevic & Phinney, 2005), e.g.

by allowing accurate determinations of Eddington ratios and other attributes of black

hole accretion, in systems with SMBH mass and spin known independently from the

GW measurements.

From a purely astronomical point of view, one of the most attractive features of

the LISA mission design is the possibility to constrain the 3-dimensional location (i.e.

sky position and distance) of GW inspiral sources to within a small enough volume

that the identification of potential electromagnetic (EM) counterparts to SMBH merger

31
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events can be contemplated seriously. Indeed, the accuracy of such LISA localizations

at merger are encouraging, with an error volume δΩ× δz = 0.3 deg2 × 0.1 for SMBH

masses m1 = m2 = 106M⊙ at z = 1, for instance (Vecchio, 2004). In Kocsis et al. (2006),

I have shown that this accuracy may be sufficient to allow an unique identification of

the bright quasar activity that may be associated with any such SMBH merger.

Another possibility, examined here in detail, is to monitor the sky for EM counter-

parts in real time, as the SMBH inspiral proceeds. This is arguably one of the most

efficient ways to identify reliably (prompt) EM counterparts to SMBH merger events,

since the exact nature of such counterparts is a priori unknown. Using the GW inspiral

signal accumulated up to some look–back time, tf , preceding the final coalescence, one

already has a partial knowledge of where the source of GWs is located on the sky. Since

the sky position is deduced primarily from the detector’s motion around the Sun, one

anticipates that angular positioning uncertainties will not change too dramatically dur-

ing the last few days before merger, so that a targeted EM observation of the final stages

of inspiral may be a feasible task. Here, I present an in-depth study of the potential for

such pre-merger localizations with LISA, while I discuss various astrophysical concepts

and observational strategies for EM counterpart identifications in a companion work

(Kocsis et al., 2007).

The main purpose of the present analysis is thus to determine the accuracy of SMBH

inspiral localizations with LISA, as a function of look–back time, tf , prior to merger. The

LISA detector is not uniformly sensitive to sources with different sky positions and an-

gular momentum orientations. Results will thus generally depend on the fiducial values

of these angles. My first objective is to calculate the time-dependence of distributions

of localization errors, for randomly oriented sources, over a large range of values for the

SMBH masses and source redshift. A second objective of my analysis is to estimate

source parameter dependencies for these distributions of localization errors, i.e. how

the 3-dimensional (sky position and distance) localization error distributions depend on

the fiducial sky position of GW sources. This is useful to understand which regions of

the sky may be best suited for the identification of EM counterparts to SMBH merger

events. To the best of my knowledge, this angle dependence has not been explored in

detail before, not even in terms of final errors at ISCO (i.e. at tf = tisco, when using the

complete inspiral data-stream, up to the innermost stable circular orbit, or ISCO).

Parameter estimation uncertainties for LISA inspirals have been considered previ-

ously, under a variety of approximations (Cutler, 1998; Moore & Hellings, 2002; Hughes,

2002a; Barack & Cutler, 2004b; Vecchio, 2004; Berti et al., 2005b; Holz & Hughes, 2005;
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Arun, 2006; Lang & Hughes, 2006). These studies differ in the levels of approximation

adopted for the GW waveform, using various orders of the post-Newtonian expansion.

The LISA signal output for these waveforms are obtained through a linear combination

of the two GW polarizations, h+(t) and h× (t), with the beam pattern functions, F+

and F× . The beam patterns define the detector sensitivity for the two polarizations.

They are determined by the angles describing the instantaneous orientation of the LISA

constellation relative to the GW polarizations. As the LISA detector constellation or-

bits the Sun, with a one year period, F+ and F× are slowly changing in time and this

introduces an additional time dependence in the LISA signal. As first shown by Cutler

(1998), the source sky position can be determined with LISA using this modulation. In

the formalism given by Cutler (1998), this modulation couples time and angular depen-

dencies in a complicated way, making the estimation of localization errors numerically

costly for a large set of SMBH binary random orientations and parameters.

Using a different approach, Cornish & Rubbo (2003) have derived the orbital modu-

lation in a much simpler form, in which the angular parameter dependence and the time

dependence can be decoupled. Here, starting directly from the original Cutler (1998)

expression, I give an independent derivation of the Cornish & Rubbo (2003) formula

and write it in an equivalent form, from which decoupling is more evident. I do this by

expanding the LISA response function into a discrete Fourier sum of harmonics of the

fundamental frequency of LISA’s orbital motion, f⊕ = 1yr−1. Since LISA’s orbit does

not include high frequency features, I expect this sum to be quickly convergent. In fact,

it is clear from the Cornish & Rubbo (2003) result that the expansion terminates at 4f⊕

and that there are no higher order harmonics due to the detector’s motion. The series

coefficients in the expansion are independent of time and only depend on the relative

angles at ISCO. I then develop a Fisher matrix formalism in which parameter error

distributions can be mapped independently of time, while the time dependence can be

computed independently of the specific SMBH binary orbital elements. A Monte Carlo

simulation for random binary orientations then becomes a simple linear combination,

without any integral evaluations. This greatly reduces the numerical cost of estimat-

ing parameter uncertainty distributions, even at fixed observation time (e.g. to map

distributions of errors at ISCO). I use this numerical cost advantage

1. to map the distribution of localization errors for the full three dimensional grid of

SMBH total mass (M = 105–108M⊙), redshift (z = 0.1–7) and arbitrary look–back

time (tf) before merger,
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2. to study how source localization error distributions vary systematically with sky

position, and

3. to discuss implications, in terms of advance warning times, for prompt electromag-

netic counterpart searches with large field-of-view astronomical instruments.

I call this new approach the harmonic mode decomposition (HMD). The method

verifies that the amplitude modulation, which is restricted to frequencies less than

4f⊕ = 1.3× 10−7Hz, is indeed a very slow modulation when compared to the GW

frequency of LISA SMBH inspirals (0.03mHz–1Hz). One plausibly expects that physical

parameters which determine the amplitude modulation (like the source sky position and

orbital inclination relative to the detector) can be estimated independently of the pa-

rameters which determine the GW frequency (like masses, orbital phase, time to ISCO).

In the HMD method, the two sets of parameters are naturally separated and can be

estimated independently. In particular, parameters related to the modulation can essen-

tially be determined on a background of GW-cycle averaged signal. In the present work,

I compute LISA inspiral localization errors with the approximation that high frequency

signal parameters have strictly no cross-correlations with parameters related to the slow

orbital modulation. In addition to the numerical advantages mentioned above, the HMD

formalism offers a clear interpretation of the time evolution of uncertainties for the slow

modulation parameters. This can be used to gain a better understanding of the general

evolutionary properties of localization errors. The following questions, that I address in

detail in this work, are particularly relevant.

(i) Under what conditions do the localization uncertainties scale simply with the mea-

sured signal–to–noise ratio, and how do these uncertainties evolve during the final

stages of inspiral?

(ii) To what extent do the high and low frequency signal parameters decouple?

(iii) What are the best determined combinations of the angular parameters?

(iv) How and why does the shape of the 3D localization error ellipsoid change during

the final week(s) of observation?

In this analysis, I neglect the “Doppler phase” due to LISA’s orbital motion, SMBH

spin precession effects and any finite SMBH binary orbital eccentricities. These approxi-

mations are advantageous for the resulting simplicity, but the use of the HMD method is
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not restricted to these approximations. I also outline a generalized HMD method which

remains numerically much more efficient than standard methods. I leave a numerical

implementation of this general HMD method to future work. It will be particularly

interesting to determine how my approximate results for the evolution of LISA localiza-

tion errors are modified when spin precession effects are included, since spin precession

effects were shown to improve the final localization errors by factors of 3–5 at ISCO

(Lang & Hughes, 2006; Vecchio, 2004).

The remainder of this paper is organized as follows. In § 3.2 I define the conventions

and the assumptions made in this analysis. In § 3.3 I expand the LISA GW signal

in Fourier modes and obtain the conversion from actual physical parameters to corre-

sponding Fourier amplitudes. In § 3.4, I incorporate these results into a Fisher matrix

formalism and derive the expressions necessary to estimate correlation errors for HMD

signals. In § 3.5, I present results from Monte Carlo computations of the time evolution

of localization errors and discuss results in terms of advance warning times for prompt

electromagnetic counterpart searches. In § 3.6, I develop toy models to interpret the

time-dependence of LISA localization errors and to answer questions (i)–(iv) above. I

summarize the results and conclude in § 3.7.

3.2 Assumptions and Conventions

This section is divided into three parts. First, I list the definitions of physical quantities

used in this paper, in particular the variables describing a SMBH inspiral. Second,

I give the equations which determine the LISA inspiral signal. Third, I state all the

assumptions made in this work.

3.2.1 Definitions

In general, an SMBH inspiral is described by a total of 17 parameters. These include

2 redshifted mass parameters, (Mz, ηz), 6 parameters related to the BH spin vectors,

pspin, the orbital eccentricity, e, the source luminosity distance, dL, 2 angles locating the

source in the sky, (θN , φN), 2 angles that describe the relative orientation of the binary

orbit, (θNL, φNL), a reference time, tmerger, and a reference phase at ISCO, φISCO, and

the orbital phase, φorb. Throughout this work, I restrict ourselves to circular orbits by

omitting the orbital eccentricity, e, and instead of the orbital phase, φorb, I use the look–
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back time before merger, t, as my evolutionary time parameter. The LISA signal for a

GW inspiral is determined by the above set of parameters and two additional angular

parameters describing the orientation of LISA, (Ξ,Φ). I elaborate on the definitions of

my mass and angular parameters below.

Mass Parameters

For component masses m1 and m2, the total mass is M = m1 + m2, the reduced mass

is µ = m1m2/M , the symmetric mass ratio is η = µ/M and the chirp mass is defined

as M = Mη3/5 (Misner et al., 1973). Throughout this work, I use geometrical units:

G ≡ c ≡ 1. In this case, the mass can be expressed in units of time: 106M⊙ ≡ 4.95 sec.

The measured GW waveforms are insensitive to the cosmological parameters, if they are

expressed in terms of the luminosity distance and the redshifted mass parameters, e.g.

mz = (1 + z)m (same for redshifted chirp and reduced masses).

Time Parameters

I write a generic look–back time (or “observation time”) before merger as t, and a generic

redshifted GW frequency (or “observation frequency”) as f 1. I use the leading order

(i.e. Newtonian) approximation for the frequency evolution. Therefore, the observed

frequency at look–back time t before merger is (e.g. eq. 3.3 in Poisson & Will, 1995)

f0(Mz, t) =
53/8

8π
t−3/8M−5/8

z = 2.7× 10−4Hz

(
t

day

)−3/8

η
−3/8
0.25 M

−5/8
6z , (3.1)

or equivalently

t0(Mz, f) = 5(8πf)−8/3M−5/3
z = 6.7 min

(
f

fc

)−8/3

η−1
0.25M

−5/3
6z , (3.2)

where M6z is the redshifted total mass in units of 4× 106M⊙, η0.25 = η/0.25 is the

symmetric mass ratio (η0.25 = 1 for equal component masses, § 3.2.3), fc = c/R⊕ =

c/(1 AU) = 2.00mHz is the inverse light-travel time across the radius of the LISA orbit,

and the null index stands for the order of approximation. The inspiral phase extends

1Note that, contrary to my convention for redshifted mass parameters, I drop the z index for f and
t because I never consider comoving frequencies or times.
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until the innermost stable circular orbit (ISCO), at 6M , is reached

f ≤ fISCO = 6−3/2π−1M−1
z = 1.1mHz×M−1

6z , (3.3)

t ≥ tISCO = 5(3/2)4η−1Mz = 33 min× η−1
0.25M6z . (3.4)

where tISCO is the (observer-frame) look–back time before merger corresponding to the

ISCO, and fISCO is the (observer-frame) frequency at ISCO.

In the present work, I fix the start of the observation (i.e. when the source first

enters LISA’s frequency band) at look–back time ti, and examine how the value of an

end-of-observation time, tf , prior to merger affects the precision on source localization. I

restrict ourselves to pre-ISCO inspiral signals, corresponding to tf ≥ tISCO. Note that any

instantaneous look–back time t associated with an observation lasting from look–back

times ti to tf must obey tISCO ≤ tf ≤ t ≤ ti in my notation.

Angular Parameters

LISA is an equilateral triangle-shaped interferometer with an arm-length of 5× 106 km,

orbiting around the Sun. The constellation trails 20◦ behind the Earth and is tilted 60◦

relative to the ecliptic. The detector plane precesses around the orbital axis with the

same one-year period as the orbital period (Danzmann & Rüdiger, 2003).

Following Cutler (1998) and Vecchio (2004) closely, including in notation, I define

two coordinate systems. The barycentric frame is tied to the ecliptic, with x̂, ŷ lying in

the ecliptic plane and ẑ normal to it. The detector reference frame tied to the detector,

with ẑ′ normal to the detector plane, while x̂′, ŷ′ are in the plane and co-rotating with

the detector so that the arms are described by time-independent vectors. I refer to

the barycentric frame with normal coordinates and to the detector frame with primed

coordinates. The unit vectors defining the source location on the sky, N̂, and the SMBH

binary orbital angular momentum, L̂, are described by polar angles (θN , φN) and (θL, φL)

in the ecliptic frame, (θ′N , φ
′
N) and (θ′L, φ

′
L) in the detector frame:

N̂(θN , φN) = ẑ cos θN + x̂ sin θN cosφN + ŷ sin θN sin φN , (3.5)

L̂(θL, φL) = ẑ cos θL + x̂ sin θL cosφL + ŷ sin θL sinφL. (3.6)

Since I assume no SMBH spins, orbital angular momentum is conserved and the θN , φN ,

θL, and φL coordinates are time-independent properties of the sources.
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Let (Ξ,Φ) be the two angles specifying the orientation of the LISA system in the

ecliptic: Φ describes its orbital phase during its motion around the Sun, while Ξ describes

the rotation of the triangle around its geometrical center. If their values at merger are

written Ξ0 and Φ0, then at an arbitrary look–back time t:

Ξ(t) = Ξ0 − ω⊕t, (3.7)

Φ(t) = Φ0 − ω⊕t, (3.8)

where ω⊕ ≡ 2π/yr is the orbital angular velocity around the Sun.

The time dependence of the detector normal vector ẑ′ can be expressed as

ẑ′ =
1

2
ẑ −

√
3

2
x̂ cos Φ −

√
3

2
ŷ sin Φ. (3.9)

The detector angles are given by

cos θ′N =
1

2
cos θN −

√
3

2
sin θN cos(Φ − φN), (3.10)

φ′
N = Ξ + tan−1

[ √
3

2
cos θN + 1

2
sin θN sin(Φ − φN)

sin θN sin(Φ − φN)

]
. (3.11)

Let us also define ψ′, the polarization angle of the GW waveform, as (Vecchio, 2004)

tanψ′ =
L̂ · ẑ′ − (L̂ · N̂)(ẑ′ · N̂)

N̂ · (L̂× ẑ′)
. (3.12)

Note that there are only 6 independent angular parameters (θN , φN , θL, φL,Ξ,Φ).

Other detector specific quantities like θ′N , φ′
N , θ′L, φ′

L, and ψ′ can be expressed in terms

of these 6 independent parameters using eqs. (3.5–3.12).

Let us introduce a new set of 6 independent angles,

Ω = (θN , φN , θNL, φNL, α, γ), (3.13)

with the following definitions:

• θNL is the relative latitude of L̂ and N̂ (i.e. the inclination of the binary orbit to

the line of sight),

• φNL is the relative longitude of L̂ and N̂,
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• α ≡ Ξ − Φ + φN − 3π
4

,

• γ(t) ≡ Φ(t) − φN .

The explicit definitions are given in Appendix A.2.

Let us refer to the angles at the reference time t = tmerger = 0 as Ω(0). Although

Φ ≡ Φ(t) and Ξ ≡ Ξ(t) are time-dependent, as given by (3.7,3.8) α is a time-independent

combination, unlike the time-dependent γ ≡ γ(t). The angles at t = 0 are thus given by

Ω(0) = (θN , φN , θNL, φNL, α, γ0).

These angles have the interesting property that they possess isotropic a priori dis-

tributions, like the original Ω(0) variables, but the measured GW waveforms expressed

in terms of these new variables are much simpler than when they are expressed in terms

of the original set eqs. (3.5–3.12).

Two additional quantities which are useful to describe the sensitivity of the detector

in various directions are the antenna beam patterns (Cutler, 1998):

F× ,+(Ω) =
1 + cos2 θ′N

2
cos 2φ′

N cos 2ψ′
N ± cos θ′N sin 2φ′

N sin 2ψ′
N , (3.14)

where the sign ± is defined to be positive for F× , and negative for F+. Equation (3.14)

and the transformation rules eqs. (3.5–3.12) define the time evolution of the antenna

beam patterns for a given set of final angles Ω(0) as the LISA system orbits around

the Sun. Note that the LISA system is equivalent to two independent orthogonal-arm

interferometers which are rotated by 45◦ relative to each other (Cutler, 1998). Both data-

streams are given by the same equations (see eq. [3.21] below), modulo a change of one of

the angles for the second detector: φ′II
N = φ′I

N −π/4 (or equivalently αII = αI−π/4 using

my time-independent angular variables). Thanks to this simple relationship between the

two data-streams, it is possible to carry out all the calculations for the first data-stream,

and later include the second data-stream in the final expression by varying the fiducial

angle α.



40 Pre-Merger Localization of Gravitational-Wave Standard Sirens

Grouping the Parameters

I group the most important parameters describing the inspiral as follows:

pslow ≡ {dL,Ω}, (3.15)

pfast ≡ {Mz, µz, tmerger, φISCO}, (3.16)

pspin ≡ {2 spin magnitudes, 4 spin angles}. (3.17)

This organization of parameters has fundamental importance in my formalism. As I

show in § 3.2.2, the parameters pfast and pspin relate to the high frequency GW signal,

while the parameters pslow relate to the distinctly slow orbital modulation.

3.2.2 LISA Inspiral Signal Waveform

For a circular binary inspiral, the two polarizations of GW signal are well approximated

by the restricted post-Newtonian expressions

h+(t) = 2
M5/3(πf)2/3

dL
(1 + cos2 θNL) cosφGW(t), (3.18)

h× (t) = −4
M5/3(πf)2/3

dL
cos θNL sinφGW(t). (3.19)

The GW phase φGW(t) ≡ φGW(pfast,pspin; t), which is twice the orbital phase , φ(t) =

2φorb(t), can be expanded into the series

φGW(pfast,pspin; t) ≈φISCO + φ0(Mz; t) + φ1(Mz, µz; t)

+ φ2(Mz, µz,pspin; t) + . . . , (3.20)

where φ0(Mz; t) is the leading order Newtonian solution to the phase evolution, suc-

cessive terms correspond to small general relativistic corrections, φISCO is the reference

phase at ISCO and φn(tISCO) = 0 for all n ≥ 0. The instantaneous GW frequency is

defined as the time derivative of the GW phase (3.20), i.e. f = f(t) ≡ dφGW/dt, which

changes very slowly compared to the GW phase itself, φGW(t). In practice I use the

Newtonian approximation (3.1), f0(t) = dφ0/dt. Note that equation (3.20) depends

implicitly on the reference time, tmerger, since my time variable t is the look–back time

before tmerger (see § 3.2.1)

The signal measured by LISA is a linear combination of the two polarizations (3.18),
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weighted by the antenna beam patterns F I,II
+ and F I,II

× for each of the two equivalent

interferometers, defined by (3.14), resulting in the two observable data–streams

hI,II(t) =

√
3

2
[F I,II

+ h+(t) + F I,II
× h× (t)], (3.21)

where the factor
√

3/2 = sin(60◦) comes from the opening angle of the LISA arms. The

beam patterns are determined by the relative orientation of the source polarizations and

the detector. Their time-dependence is due to the following three main effects: LISA

changes its orientation as it orbits the Sun, LISA changes its relative distance to the

source as it orbits the Sun, and the orbital plane of the SMBH binary can precess because

of spin-orbit coupling effects. Substituting (3.18) in (3.21) and expressing it in complex

form, I get

hI,II(t) =
A(Mz, f)

dL
GI,II(Ω, f)eiφGW(pfast,pspin;t), (3.22)

where A(Mz, f)/dL defines the overall amplitude scale, with

A(Mz, f) = 2
√

3(πf)2/3M5/3
z . (3.23)

The G(Ω, f) factor defines the angular dependence of the signal,

GI,II(Ω, f) = GI,II
A (Ω)eiϕD(Ω,f), (3.24)

where GA(Ω), the amplitude modulation, captures the varying detector sensitivity with

direction and polarizations of the GWs,

GI,II
A (Ω) =

1 + cos2 θNL

2
F I,II

+ (Ω) − i cos θNLF
I,II
× (Ω). (3.25)

The additional ϕD(Ω, f) modulation is the Doppler phase modulation, which is the dif-

ference between the phase of the wavefront at the detector and at the barycenter (Cutler,

1998):

ϕD(Ω, f) = 2π
f

fc
sin θN cos γ. (3.26)

There is a non-negligible number of Doppler phase cycles only for a GW frequency

satisfying f ≥ fc (see definition of fc below eq. [3.2] above). However, equation (3.3)

shows that f ≤ fISCO < fc, hence the fc frequency is reached only after ISCO for typical
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SMBH component masses of m1 = m2 = 106M⊙ and redshift z = 1. Even for smaller

105M⊙ component masses, the total number of cycles, Npm, remains < 1 until the final

5 hr of inspiral. Therefore the Doppler phase (3.26) is practically negligible for SMBH

inspirals. In fact, estimating localization errors without accounting for the Doppler

phase affects results by less than a factor of 10−3 (for m1 = m2 = 106M⊙ at z = 1;

S. A. Hughes, private communication). Therefore, in eq. (3.24), I neglect ϕD(Ω, f) and

restrict ourselves to the approximation

GI,II(Ω, f) ≡ GI,II
A (Ω). (3.27)

The explicit frequency-dependence dropped out, and the time evolution of the signal GA

is now fully determined by the time evolution of the angles Ω.

Note that the amplitude modulation (3.25), GI,II
A (Ω), is traditionally expressed in

complex polar notation (e.g. Cutler, 1998), where the magnitude and argument of the

complex number are called polarization amplitude and phase. As I will show, the mode

decomposition is simplest in the original Cartesian complex form (3.25), which already

includes both the polarization amplitude and phase; thus, I do not distinguish these

two quantities in the following. The function GI,II(Ω, f) given in (3.24) also accounts

for spin-orbit precession if the orbital orientation (θNL, φNL) in Ω is chosen to be time-

dependent, to satisfy the equations for spin-orbit precession, and if an extra precession

phase shift, exp(iδP (θNL, φNL)), is introduced (see eq. 2.14 in Lang & Hughes 2006) in

addition to the Doppler phase in (3.24). In these calculations, I neglect spin precession

but in Kocsis et al. (2007) I discuss how the HMD method can be extended to include

that effect.

Finally, I express the measured signal (3.22) as

hI,II(p; t) = hc(pfast,pspin; t)×hI,II
m (pslow; t), (3.28)

where hc is the high frequency carrier signal and hm is the slow modulation:

hc(pfast,pspin; t) = A(Mz, f(t))eiφGW(pfast,pspin;t) (3.29)

hI,II
m (pslow; t) =

GI,II
A (Ω(t))

dL
. (3.30)

Equation (3.28) shows that the two sets of parameters pslow and {pfast,pspin} are

exclusively determined by the low frequency modulation and the high frequency carrier,
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respectively. For this reason, I only expect a low level of cross-correlation between these

sets of parameters: parameters associated with very different timescale components

should essentially decouple. In Sec. 3.6.1 and Appendix A.1, I consider several toy

models which allow us to understand the necessary conditions, and the extent to which,

parameters associated with high and low frequency components decorrelate in the course

of an extended, continuous observation.

3.2.3 Simplifying Assumptions

In the present work, I make the following assumptions:

1. I assume that the amplitude modulation can be used to determine the luminos-

ity distance and angular parameters, pslow = {dL, θN , φN , θNL, φNL}, while the

other parameters, pfast = {Mz, µz, tmerger, φISCO}, are determined from the high

frequency GW phase. I assume no cross-correlations between these two sets of

parameters. This is supported by the results listed in Table 1 of Hughes (2002a),

which shows the full covariance matrix of a Monte Carlo realization of 2PN wave-

forms. The correlation coefficients are ∼ 0.1 for the above quantities, and the abso-

lute scale of the second set of parameters is very low in the first place. Berti et al.

(2005b,c) also report that the sets pfast and pslow are relatively uncorrelated for

general relativity and even for alternative theories of gravity. In the latter case, the

carrier hc(t) in the signal (3.28) is modified but not the slow modulation, hm(t),

so that the general expectation of decoupling is maintained.

2. I assume that there are no additional errors on the detector orientations Φ(0) and

Ξ(0). These parameters are given by tmerger via eq. (3.8) and (3.7), and tmerger itself

is determined by the high frequency carrier signal to high precision. Using the full

data-stream up to ISCO, δtmerger ∼ 2 sec (Arun, 2006; Hughes, 2002a). Using (3.8)

and (3.7), I estimate |δΦ(0)| = |δΞ(0)| ≡ ω⊕δtmerger = 4× 10−7 rad = 0.08′′. This

is so small that I expect the errors δΦ(0) and δΞ(0) to be negligible at any relevant

end-of-observation times tf > tISCO, even if the tf -dependence of these errors scale

as steeply as (S/N)−1 (see also Appendix A.1).

3. I use the circular, restricted post-Newtonian (PN) approximation for the GW wave-

form, keeping only the leading order (i.e. Newtonian) term in the signal amplitude.

Higher order corrections to the GW amplitude introduce additional structure to

the waveform. They improve the parameter estimation uncertainties for high mass
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binaries (Van Den Broeck & Sengupta, 2007a,b) and introduce additional correla-

tions between the parameters. It will be important to consider these corrections

to the amplitude in future investigations. Arbitrary PN corrections to the GW

phase only enter via hc in the signal given by eq. (3.28). Since I neglect correla-

tions between the sets of parameters pslow and (pfast,pspin), all the restricted PN

corrections to the phase drop out and become irrelevant for the pslow parameter

estimations.

4. I neglect the effects of Doppler phase modulation. This is plausible for SMBH

binaries with component masses m > 105M⊙, since the GW wavelength in this

case is generally greater than LISA’s orbital diameter and Npm < 1 (see eqs. [3.26]

and [3.1]).

5. I neglect SMBH spins and, in particular, neglect the spin–orbit precession for an-

gular determinations. This assumption is useful in simplifying the equations and

in focusing on the behavior of pure angular modulation. Future studies can incor-

porate spin–orbit precession by convolving the angular modulation decomposition

with spin–orbit effects.

6. I fix the start of LISA observations at a look–back time ti ≡ min{t0(fmin), 1yr}
prior to merger. This corresponds to the time when the GW inspiral frequency

f crosses the low frequency noise wall of the detector at fmin = 0.03mHz, but I

limit the initial look–back time to a maximum of 1yr before merger. Note that

LISA’s effective mission lifetime is estimated to be 3yr. Integrated observation

times longer (but also shorter) than my assumed ti values are possible in principle,

depending on source specifics. In a more elaborate treatment, one could define ti

as an a priori random variable. I fix ti here mostly for simplicity and focus on

the effects of varying the values of tf (< ti). In § 3.6.1 I show that localization

errors are primarily determined by the end-of-observation time, tf , and that values

of ti > 1yr do not significantly change the evolution or final localization error

estimates. If, however, ti ≪ 1yr (that is, if tmerger is within a few months of the

beginning of observation), then localization errors can become significantly worse

than with ti = 1yr.

7. I neglect finite arm-length effects and I do not make use of the three independent

observables of the time delay interferometry (Prince et al., 2002). This is a valid

assumption for SMBH inspirals since here f ≪ c/L = 0.01Hz.
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8. I neglect any finite orbital eccentricities. I note that, for eccentric orbits, higher or-

der harmonics appear in the GW phase. In principle, since these harmonics affect

the high frequency GW phase, but not the slow modulation, including finite eccen-

tricities should not significantly affect localization error estimates. For rather ec-

centric orbits, high-order harmonics with f ≫ fc can have a non-negligible Doppler

phase (3.2), which would lead to an improvement in the determination of θN and

φN . Although eccentricity is efficiently damped by gravitational radiation reaction

(Peters, 1964), the presence of gaseous circumbinary disks could lead to non-zero

eccentricities for at least some LISA inspiral events (Armitage & Natarajan, 2005;

Papaloizou et al., 2001).

9. I follow Barack & Cutler (2004b) in calculating the LISA root spectral noise den-

sity, Sn(f), which includes the instrumental noise as well as galactic/extra-galactic

backgrounds. For the instrumental noise (Berti et al., 2005b), I use the effective

non-angularly averaged online LISA Sensitivity Curve Generator2, while I use the

isotropic formulae for the galactic and extra-galactic background (Barack & Cutler,

2004b).

10. My analysis focuses on statistical errors and does not account for possible system-

atic errors. For example, waveform templates might be inaccurate either due to

the imprecision of the theory if the true waveform is not the one predicted by gen-

eral relativity, or due to practical limitations from necessarily finite realizations of

the large template space. Such inaccuracies can introduce new systematic errors.

3.3 Harmonic Mode Decomposition

In my formalism, the angular information of the LISA inspiral signal is contained ex-

clusively in the periodic modulation due to the detector motion around the Sun, which

adds an amplitude modulation to the high frequency waveform. This modulation has

a fundamental frequency, f⊕ = 1/yr, along with upper harmonics jf⊕, where j is an

integer. Although it is intuitively clear that the high frequency harmonics will tend to

have a vanishing contribution, it is hard to establish this just by looking at eqs. (3.5–

3.12), which define the time evolution. In this section I show that it is possible to derive

surprisingly simple analytical expressions for the amplitude of each harmonic. I provide

an outline of the derivation starting from the commonly used Cutler (1998) formulae

2www.srl.caltech.edu/∼shane/sensitivity/
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(3.5–3.12) and alternatively from those in Cornish & Rubbo (2003). I show that the

derivation is much simpler in the latter case, in the sense that the Cornish & Rubbo

(2003) expression is almost already in the desired form.

3.3.1 Derivation using Cutler (1998)

I expand the modulating signal (3.25,3.30) in a Fourier series

hm(pslow(0); t) =
GA(Ω(t))

dL(z)
=

∞∑

j=−∞
gj(pslow(0))eijω⊕t, (3.31)

where gj(pslow(0)) are the mode amplitude coefficients and pslow(0) are the distance and

angle variables at t = 0 (see § 3.2.1). The coefficients can be obtained as

gj(pslow(0)) =
1

2πdL

∫ 1yr

0

dtGA(Ω(t))e−ijω⊕t. (3.32)

Substituting the definition of GA(Ω(t)) from eq. (3.25), using the time evolution of Ω(t),

eqs. (3.5–3.12), integral (3.32) can be evaluated.

Although conceptually simple, a direct analytical evaluation of integral (3.32) is

overly cumbersome. Thus, for practical reasons, I follow an alternative path. I start

with the original Cutler (1998) formulae, given by eqs. (3.14) and (3.25). First, using

general trigonometric identities, I can express cos 2x and sin 2x with tan(x) for x = φ′
N

and x = ψ′. In the second step, I express and substitute for tanφ′
N and tanψ′

N with

ecliptic variables using (3.11) and (3.12). In the third step, I express the trigonometric

functions in complex form. After this step, each term in the beam pattern (3.14) is of

the form

∑
n ane

inγ

∑
m bme

imγ
, (3.33)

where the sums over n and m integers are finite, containing only a few terms, and

an and bn depend only on the angles (θN , φNL, α). In the fourth step I simplify the

product of fractions. It turns out that, after combining terms, the denominators drop

out exactly, leaving a formula just like (3.31), except that the largest element in the

sum is |j| = 4. In the fifth step, I substitute in (3.25), and finally, change back from

complex to trigonometric notation for the coefficients, using the half-angles θN/2 and
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θNL/2. Finally I arrive to the remarkably simple form:

hm(pslow) = dL(z)−1
4∑

j=0

(LNjDj + L∗N∗
j Dj + L∗NjD

∗
j + LN∗

j D
∗
j ), (3.34)

where the functions L, N , and D depend only on the angular momentum angles, sky

position angles, and detector angles, respectively:

L(θNL, φNL) ≡ sin4

(
θNL

2

)
e−2iφNL , (3.35)

Nj(θN ) ≡ wj cosj

(
θN

2

)
sin4−j

(
θN

2

)
, (3.36)

Dj(α, γ) ≡ ie2iαeijγ, (3.37)

where wj = 1/16× (9, 12
√

3, 18, 4
√

3, 1) for j = (0, 1, 2, 3, 4), respectively, and I have

defined asterisks to refer to the following conjugates:

L∗(θNL, φNL) ≡ L(π − θNL,−φNL), (3.38)

N∗
j (θN ) ≡ (−1)jNj(π − θN ), (3.39)

D∗
j (α, γ) ≡ −Dj(−α,−γ) ≡ Dj(α, γ). (3.40)

Note that using these conjugate functions, only the non–negative terms 0 ≤ j ≤ 4

remain in the sum (3.34).

Substituting the time dependence implicit in γ ≡ γ(0)+ω⊕t, equation (3.34) becomes

hm(pslow(0), t) = dL(z)−1

4∑

j=−4

gj(pslow(0))eijω⊕t, (3.41)

where the coefficients are

gj(pslow(0)) =





LNjD|j|(0) + L∗N∗
j Dj(0) if j ≥ 0

L∗N|j|D
∗
|j|(0) + LN∗

|j|D
∗
|j|(0) if j ≤ 0

(3.42)

and the detector functions Dj(0) and D∗
j (0) refer to their values at t = 0, γ(0). (Note

that L,Nj , L
∗, N∗

j are all time-independent.) Since the decomposition (3.31) is unique,

the coefficients (3.42) that I read off from the result also satisfy eq. (3.32).
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3.3.2 Derivation using Rubbo & Cornish 2003

My result in (3.34) can also be derived from the Cornish & Rubbo (2003) formulae

for the LISA response function. In their paper, these authors use a different set of

angles, which relate to ours as follows: θCR = θN , φCR = φN , ψCR ≡ φNL − (π/2),

λCR ≡ −α + φN ≡ Φ − Ξ − (3π/4), and αCR ≡ γ + φN ≡ Φ. Note that my set of

angles is very similar to theirs, except that I measure the detector angles relative to

the source, φN . This is advantageous given the rotational symmetry around the Earth

orbital axis, making angles relative to the source the only ones that should have an

effect on the measured GWs; I expect φN to drop out of the equations when using α

and γ. Note, once again, that the variables (θN , φN , θNL, φNL, α) are time independent,

while γ ≡ γ(t). Writing the Cornish & Rubbo (2003) beam patterns for low frequencies,

which is fully equivalent to Cutler (1998), with my angular variables3, I get

F I,II
+ = −1

2
[cos(2φNL)DI,II

+ (t) − sin(2φNL)DI,II
× (t)], (3.43)

F I,II
× = −1

2
[sin(2φNL)DI,II

+ (t) + cos(2φNL)DI,II
× (t)], (3.44)

where

D+ = 1
32

{−36 sin2 θN sin(2γ + 2α) + (3 + cos 2θN)

× {cos(2φN)[9 sin(−2α + 2φN) − sin(4γ + 2α + 2φN)]

+ sin(2φN)[cos(4γ + 2α− 2φN) − 9 cos(−2α + 2φN)]}
− 4

√
3 sin(2θN)[sin(3γ + 2α) − 3 sin(γ + 2α)]}, (3.45)

and

D× = 1
8
√

3
{
√

3 cos θN [9 cos(−2α) − cos(4γ + 4α)]

− 6 sin θN [cos(3γ + 2α) + 3 cos(γ + 2α)]}. (3.46)

One notices instantly that the time dependence here is much simpler than in the

original Cutler (1998) formula, as it is inscribed only in the various harmonics of γ.

I can identify the highest harmonic present to be 4γ. Expanding the trigonometric

3Cornish & Rubbo (2003) combine the
√

3/2 factor with the beam patterns FCR,I,II
+ =

√
3

2
F I,II, but

I follow the original definition, where
√

3/2 appears only when taking the linear combination of GW
polarizations (3.21).
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functions using standard identities, I obtain

D+ = − 1

32




9(3 + cos 2θN)

−12
√

3 sin 2θN

36 sin2 θN

4
√

3 sin 2θN

3 + cos 2θN




·




sin(2α)

sin(2α + γ)

sin(2α+ 2γ)

sin(2α+ 3γ)

sin(2α+ 4γ)




, (3.47)

and

D× = −1

8




−9 cos θN

6
√

3 sin θN

0

2
√

3 sin θN

cos θN




·




cos(2α)

cos(2α + γ)

cos(2α+ 2γ)

cos(2α+ 3γ)

cos(2α+ 4γ)




, (3.48)

where a · b =
∑

n anbn is the usual dot product. Now, the second sets of elements

carry the time dependence and the detector orientation information, while the first

sets describe the sky position. Note that the explicit φN dependence dropped out, as

expected. Next, I manipulate equations (3.47,3.48), substituting complex expressions

for the trigonometric ones, and substituting these into eq. (3.25). I finally arrive at

eq. (3.34) after changing to half–angles θN/2 and θNL/2.

I note that eqs. (3.34) or (3.41,3.42) are fully general expressions, equivalent to the

standard LISA inspiral signal in eqns. (3.14) and (3.25). The two data-streams are

obtained by substituting α = αI and αII , corresponding to the two independent LISA-

equivalent Michelson interferometers (see § 3.2.1). To verify the final result, I compare

numerically the signals computed using eqs. (3.14,3.25) with the signals computed using

eqs. (3.41,3.42), for a large set of random choices of angles. Agreement is achieved at

machine precision levels.

The main utility of eq. (3.34), is that it can be used to “deconstruct” parameter

error histograms, i.e. to understand how the errors depend on the fiducial values of the

parameters. As compared to Cornish & Rubbo (2003), my result leads to an explicit

decoupling of the signal angular dependence into simple products of one-dimensional

functions. In particular, the dependence on sky position, angular momentum, and de-
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tector angles are separated. Using the special conjugate functions L∗, D∗, N∗, eq. (3.34)

displays the symmetry properties of the signal. Finally, one angular variable, φN is

eliminated exactly.

3.4 Estimating Parameter Uncertainties in the HMD

formalism

Parameter estimations for LISA GW inspiral signals are possible with matched filter-

ing and the expected uncertainties can be forecast using the Fisher matrix formalism

(Cutler & Flanagan, 1994; Finn, 1992). In this section, I apply this approach to the

LISA signal derived in § 3.3, with an angular dependence of the signal decomposed into

harmonic modes. In § 3.4.2, I consider the simple case of a high frequency carrier signal

that is modulated by a low-frequency function, without any cross-correlation between

the two sets of relevant parameters. I derive a simple formula for the estimation of

modulating parameter uncertainties. In Kocsis et al. (2007), I consider a more general

post-Newtonian signal and show that parameters related to source localization can still

be decoupled from the time evolution and the other source parameters.

3.4.1 Fisher Matrix Formalism

Let us consider a generic real signal described by the function h(x), which depends on

N parameters {pa}a∈[1,N ]. The measured signal is y(x) = h(x) + n(x), where n(x) is

a realization of the noise specified by a probability distribution. Let us assume that

the noise is Gaussian, is statistically stationary with respect to x, has zero mean value,

〈n(x)〉 = 0, where 〈〉 represents an ensemble average, and has known variance, σ(x)2 =

〈n(x)2〉. The parameter estimation errors for pa can then be calculated using the Cramer-

Rao bound (Finn, 1992)

〈δpa δpb〉 ≥ 〈Γ−1〉a b, (3.49)

where equality is approached for high S/N signals. Here Γa b is the Fisher matrix defined

by

Γa b =

∫ xmax

xmin

∂ah(x) ∂bh(x)

σ2(x)
dx, (3.50)
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where ∂a is the partial derivative with respect to the parameter pa. Note that σ(x)

here is defined as the noise per unit x. In eq. (3.50), x denotes time t for time-domain

samples, or f for frequency-domain samples. The purpose of this work is to study how

an arbitrary end of the observation, at xmax (or tf below, for time samples) affects the

resultant correlation errors 〈δpa δpb〉, for a fixed start-of-observation at xmin (or ti below,

for time samples).

An important quantity for the evolution of parameter estimation errors is the signal-

to-noise ratio, S/N , defined by

(
S

N

)2

=

∫ xmax

xmin

h2(x)

σ2(x)
dx. (3.51)

For LISA, the noise varies with signal frequency. In this case, the Fisher matrix can

be evaluated in Fourier space (Cutler & Flanagan, 1994; Finn, 1992),

Γ(tf)a b = Re

{
4

∫ f(tf )

fmin

∂ah̃(f) ∂bh̃(f)

S2
n(f)

df

}
, (3.52)

where h̃(f) is the Fourier transform of h(t), the GW signal (3.28), ∂a is the partial

derivative with respect to parameter pa, bars denote complex conjugation, and S2
n(f) is

the one-sided spectral noise density (§ 3.2.1).

3.4.2 Approximate solution

I seek an alternative equivalent form of eq. (3.52) specific to GW inspirals for which, as

in eq. (3.28), the high frequency carrier signal is decoupled from the slow modulation.

In case of SMBH inspirals, with a high frequency signal hc(t) changing its frequency

slowly as f0(t) given in eq. (3.1), and further modulated by a slowly varying function

hm(t) as given in eq. (3.28), the integral in eq. (3.52) can be evaluated in the stationary

phase approximation, by substituting

h̃(f) = hm[t0(f)]× h̃c(f), (3.53)

where h̃c(f) is the Fourier transform of the carrier signal and hm[t0(f)] is the modulating

function evaluated at the time when the carrier frequency is f . This can be converted

to the time domain, by simply changing the integration variable to t = t0(f) using the
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frequency evolution in eq. (3.2):

Γ(tf)a b = Re

{
4

∫ ti

tf

∂ah̃(t) ∂bh̃(t)

S2
n[f0(t)]

∣∣∣∣
df0(t)

dt

∣∣∣∣dt

}
, (3.54)

and

h̃(t) = hm(t)× h̃c[f0(t)]. (3.55)

I are only interested in estimating uncertainties for the pslow variables (§ 3.2.1), which

are determined exclusively by hm(t). Recall from eq. (3.29) that |hc(t)| = A so that, for

the Fourier transform4, I have |hc(t)|2 = 4|h̃c(f)|2(df/dt). Using these relationships, let

us define the instantaneous relative noise amplitude per unit time σ(t) as

σ−2(t) = 4
h̃c

2
[f0(t)]

S2
n[f0(t)]

∣∣∣∣
df0(t)

dt

∣∣∣∣ =
A2[f0(t)]

S2
n[f0(t)]

=
3
√

5

4

M5/2
z t−1/2

S2
n[f0(Mz, t)]

. (3.56)

The last equality follows from the Newtonian waveform and frequency evolution, equa-

tions (3.23) and (3.1). I point out that the mass dependence is captured entirely by σ(t)

and does not appear anywhere else in what follows.

By combining eqs. (3.54), (3.55), and (3.56), I arrive at

Γ(tf)a b =

∫ ti

tf

Re[∂ahm(t) ∂bhm(t)]

σ2(t)
dt. (3.57)

Equation (3.57) is the special case of (3.52), where the carrier signal-to-noise ratio and

modulation, hm, are conveniently isolated.

I are now ready to make use of the harmonic mode decomposition. Substituting

eq. (3.31) into (3.57) gives

Γ(tf)a b = Re

{
4∑

j1,j2=−4

∂agj1 ∂bgj2Pj2−j1(tf)

}
, (3.58)

4The reason for the factor 4 is that the mean squared of cos(x) or sin(x) is 1/2 in (3.18), and since I
use one-sided signals in frequency domain (f > 0), responsible for another factor of 1/2 in comparison.



Pre-Merger Localization of Gravitational-Wave Standard Sirens 53

where

Pj2−j1(tf) =

ti∫

tf

ei(j2−j1)ω⊕t

σ2(t)
dt. (3.59)
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m1 = m2 = 106M⊙
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ti = 340 days

P0(tf)
ℜP4(tf)
ℑP4(tf)

Figure 3.1 The time evolution of the fundamental functions Pj(tf), used to construct
the Fisher matrix to forecast localization errors by LISA. The dependence of the Fisher
matrix on the look–back time tf is obtained from the 9 fundamental functions with
0 ≤ j ≤ 8. The curves show P0(tf), as well as the real and imaginary parts of P4(tf),
for m1 = m2 = 106M⊙ and z = 1. Thin dotted lines represent negative values. Note
that P0(tf) ≡ (S/N)2, which is the simple scaling of inverse squared errors, neglecting
correlations. The signal-to-noise ratio scales steeply, approximately as S/N ∝ t−1

f . The
curve P4(tf) illustrates how all the other similar Pj(tf) functions vary, with a relative

number |j| of oscillations, and P−j(tf) ≡ Pj(tf).

The function Pj(tf) is shown in Figure 3.1 for j = 0, together with real and imagi-

nary parts for the j = 4 case, for m1 = m2 = 106M⊙ at z = 1. Since the accumulated

signal-to-noise ratio is S/N = P0(t), the figure shows that the instantaneous signal-to-

noise ratio is [d/dt](S/N) = [d/dt]P0(t) ≈ t−2. The extrapolated signal-to-noise blows

up at “merger” (t = 0). Data analysis for such a non-stationary signal-to-noise ratio
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evolution has several interesting implications, which I study further with toy models in

Appendix A.1. I find that, for such a signal-to-noise ratio evolution, specific combina-

tions of parameters can always be measured to very high accuracy.

The time dependence in eq. (3.59) couples only to the combination j = j2 − j1. This

allows to rearrange the double sum on (j1, j2) and evaluate one of them independent of

time:

Γ(pslow, tf)a b = Re

{
8∑

j=−8

[Fj(pslow(0))]abPj(tf)

}
, (3.60)

(3.61)

where

[Fj(pslow(0))]a b =

8∑

j′=−8

∂agj+j′(pslow(0)) ∂bgj(pslow(0)). (3.62)

My parameters in the correlation matrix are pa = (dL, θN , φN , θNL, φNL) since I as-

sume that the other parameters, i.e. {Mz, ηz, φISCO, tmerger, α, γ(0)}, are known from the

high frequency carrier signal (§ 3.2.3). It is straightforward to compute the derivatives

of gj(dL,Ω) using eq. (3.42) for all parameters pa, except φN . The φN dependence in gj

in eq. (3.42) is implicit in α ≡ α(Ξ(0),Φ(0), φN) and γ(0) ≡ γ(Φ(0), φN) (see § 3.2.1).

Since I assume that Ξ(0) and Φ(0) are measured to very high precision with the high

frequency carrier (§ 3.2.3), I can use the chain rule to express the φN derivative as

∂φN
gj = ∂αgj − ∂γ0

gj .

Up to this point I did not make use of the fact that the LISA signal is equivalent to

two orthogonal arm interferometers rotated by ∆α = π/4 with respect to each other.

To account for both data-streams being measured simultaneously, the Fisher matrix is

written as the sum of the two Fisher matrices corresponding to each individual interfer-

ometer. Writing out only the α dependence, I have Γtot
a b (α) = Γa b(α) + Γa b(α − π/4).

Finally, according to eq. (3.49), the parameter error covariance matrix is the inverse of

this total Fisher matrix:

〈δpa δpb〉 ≥[Γa b(dL, θN , θNL, φNL, α, γ(0)) + Γa b(dL, θN , θNL, φNL, α− π/4, γ(0))]−1.

(3.63)

Equation (3.63) along with (3.60) is my final expression, describing the time evolution
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of parameter estimation uncertainties. I note that after combining both data-streams,

the matrices [Fj(pslow(0))]a b for 4 < |j| ≤ 8 modes vanish exactly for all pslow(0).

Let me emphasize the most important features of eq. (3.60):

• The parameter dependence is separated from the time dependence. The Fisher

matrix, Γa b, is written as a linear combination of matrices Fj(pslow) weighted by

the scalars Pj(t), where Fj(pslow) is independent of time and Pj(t) is independent of

the parameters pa. Evaluating Fj(pslow) requires the computation of the parameter

derivatives ∂agj.

• The evaluation of all integrals Pj(tfn) for different n = 1, 2, . . . , Ntf can be done in

the same amount of time as needed for a single integration, since the tf dependence

enters only in the integration bound in eq. (3.59),

• Large Monte Carlo (MC) simulations can easily be performed since the time evolu-

tion is given by a small number of functions, Pj(t), which can be calculated a priori

and pre-saved. No integrations at all are necessary during the MC simulation for

calculating distributions of correlation matrices.

3.5 Results

Having described the HMD formalism in detail, I now apply it to build MC simulations

aimed at studying how RMS source localization errors 5 evolve as a function of look–

back time, tf , before merger. The low computational cost of the HMD method allows

us to survey simultaneously the dependencies on source sky position, SMBH masses

and redshifts. I carry out MC calculations with 3× 103 random samples for the angles

cos θN , cos θNL, φNL, α, γ(0). Several thousands values of M and z are considered, in the

range 105 < M/M⊙ < 108 and 0.1 ≤ z ≤ 7. In addition, I ran specific MC calculations

to study possible systematic effects with respect to the source sky position, by fixing θN

and φN (on a grid of several hundred values) and varying all the other relevant angles.

In all of my computations, I calculate the error covariance matrix for dL, θN , φN ,

θNL, and φNL. Following Lang & Hughes (2006), I calculated the major and minor axes

5The Fisher matrix method yields
√
〈δp2

i 〉 RMS error for each set of fiducial angles. As an approxi-
mation, I identify the distribution of errors with the distribution of RMS errors.
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of the 2D sky position uncertainty ellipsoid, 2a and 2b, and the equivalent diameter,√
4ab.

I have verified my HMD implementation and the general validity of my assumptions

by comparing my results at ISCO with those of Lang & Hughes (2006) (for m1 = m2 =

105, 106, 107M⊙ at z = 1 and m1 = m2 = 105, 106M⊙ at z = 3, in the no spin precession

case). Depending on SMBH masses and redshifts, I found agreement at the 5–30% level

for the mean errors on the luminosity distance, major axis, and minor axis. The small

discrepancies may be due to differences in the set of assumptions made. Lang & Hughes

(2006) account for the small cross-correlations between the pslow and {pfast,pspin} param-

eters and they choose ti to be uniformly distributed between merger time and LISA’s

mission lifetime. Recently, Lang & Hughes (2006) reported angular errors that are a

factor of 2–3 lower, which are inconsistent with my results at this level. Nevertheless,

these discrepancies are still small relative to the typical width of error distributions or

to the systematic variations of mean errors with tf , M , and z (from a factor of few to

orders of magnitudes, see Fig. 3.2 below). This successful comparison justifies the use

of the HMD method to study the dependence of localization errors on look–back time.

3.5.1 Time dependence of source localization errors

I calculate the variation with look–back time, tf , of the distribution of marginalized

parameter errors for a range of values of M, z, θN , θNL, φNL, α, γ(0). Figure 3.2 shows

results for random angles and m1 = m2 = 106M⊙, at z = 1.

The left panel shows the luminosity distance error, δdL, while the right panel describes

the equivalent diameter, 2
√
ab, of the sky position error ellipsoid with minor and major

axes a and b. The figure displays results for three separate cumulative probability

distribution levels, 90%, 50%, 10%, so that 10% refers to the best 10% of all events,

as sampled by the random distribution of angular parameters. The evolution of errors

scales steeply with look–back time for tf ∼> 40 days. In this regime, the improvement of

errors is proportional to (S/N)−1. For smaller look–back times, errors stop improving

in the “worst” (90% level) case, improve with a much shallower slope than (S/N)−1 for

the “typical” (50% level) case, and keep improving close to the (S/N)−1 scaling in the

“best” case (10% level among the realizations of fiducial angular parameters). Although

Figure 3.2 shows only the equivalent diameter of the 2D sky localization error ellipsoid,

I have also computed the evolution of the distribution of the minor and major axes. I

find that a ≈ b ≈
√
ab initially (i.e. the ellipsoid is circular), but the geometry changes
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Figure 3.2 Evolution with pre-ISCO look–back time, tf , of LISA source localization
errors, for M = 2× 106M⊙ and z = 1. The left panel shows luminosity distance errors
and the right panel shows sky position angular errors (equivalent diameter, 2

√
ab, of the

error ellipsoid). Best, typical, and worst cases for random orientation events represent
the 10%, 50%, and 90% levels of cumulative error distributions, respectively. Errors for
worst case events effectively stop improving at a finite time before ISCO, even though
the signal-to-noise ratio accumulates quickly at late times. Errors for best case events
(especially the minor axis) follow the signal-to-noise ratio until the final few hours before
merger.

significantly during the last two weeks to merger. For example, in the typical case, the

major axis a stops improving at late times, while the minor axis a maintains a steep

evolution. Therefore the eccentricity of the 2D angular error ellipsoid changes quickly

with look–back time. This is important because large eccentricities can play a role in

assessing observational strategies for EM counterpart searches (Kocsis et al., 2007).

To map possible systematic effects with respect to source sky position, I carried out

MC computations with random (cos θNL, φNL, α) angles (sample size NMC = 3× 103)

but fixed source sky latitude and longitude relative to the detector (θN , γ), for m1 =

m2 = 106M⊙ and z = 1. I find no systematic trends with sky position for δdL, for any

value of the look–back time, tf . Neither do I find systematic trends with sky position for

the distributions of minor and major axes of the angular ellipsoid, for any value of the

look–back time, tf , as long as θN is not along the equator. The case of equatorial sources,

with θN ≈ 90◦ and a short look–back time tf before merger, is the only nontrivial one I

have identified. In that case, I find a minor systematic trend with γ longitude. The error

distributions shift periodically up and down, relative to the average, when changing γ

from 0 to 2π.

In addition, to map dependencies with mass–redshift–look–back time of localization
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errors, I carried out MC computations with arbitrary (cos θN , cos θNL, φNL, α, γ) angles,

with sample size NMC = 3× 103, for several thousand pairs of (M, z) values. I find that

the evolution with look–back time of error distributions depends sensitively, and in a

complicated way, on the mass-redshift parameters. Generally, localization errors increase

with redshift. Firstly, the S/N is approximately proportional to the instantaneous value

σ(tISCO) ∝ η3/4[(1+ z)M ]5/4/dL(z)Sn(fISCO)−1 (eq. [3.56]) and, secondly, the beginning-

of-observation time scales as ti ∝ η−1[(1 + z)M ]−5/3 (eq. [3.2]). For (1 + z)M <

4× 106M⊙, the total observation time can exceed one year and the second effect is

unimportant. I further describe mass–redshift dependencies below, in § 3.5.2, in relation

to advance warning times for targeted electromagnetic counterpart searches.

The results on localization errors from my extensive exploration of the parameter

space of potential LISA sources can be summarized as follows:

1. Probability distributions

• The error distributions for δdL, 2a, and 2b all have long tails: 1%–99% cumu-

lative probability levels are separated by factors of ∼ 100, while the 10%–90%

levels are separated by factors of ∼ 10.

• The δdL distribution is skewed, with a median closer to the best case, a median

smaller than the mean, even on a logarithmic scale. On the other hand, sky

localization error distributions are roughly symmetric on a logarithmic scale.

2. Fiducial parameter dependencies

• The δdL errors are roughly independent of fiducial angles throughout the

observation.

• For non-equatorial sources, the distribution of sky localization errors, (2a, 2b),

is independent of sky position, i.e. the distribution does not have a systematic

dependence on θN and γ ≡ Φ − φN (for random α, θNL, φNL).

• There is a small systematic trend with γ for equatorial sources.

• There is a complicated dependence of sky localization errors on M, z, and

look–back time tf . For long observation times, errors scale with (S/N)−1 ≈
[(1 + z)M]5/4dL(z)−1Sn(fISCO(M, z))−1fa(tf), where fa(tf) is the tf-scaling

shown in Fig 3.2. For larger redshifted masses, the scaling has a complicated

structure in the M, z, tf space that I did not analyze in detail (but see eq.

(A.10) in the Appendix for scalings in terms of ti and tf .)
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3. Time dependence

• Luminosity distance and sky localization errors roughly scale with (S/N)−1

until 2 weeks before ISCO.

• For the luminosity distance δdL and the major axis 2a, there is little improve-

ment within the last week before ISCO for the typical to worst cases (i.e.

50%–90% levels of cumulative error distributions).

• For the minor axis 2b, only the worst case events stop improving within the

last week. The typical to best cases continuously improve until the last hour.

• The eccentricity of the sky localization error ellipsoid changes with time dur-

ing the first and last two weeks of observation. The eccentricities are smaller

in between these two time intervals. For a detailed discussion of the eccen-

tricity and its impact on counterpart searches, see Kocsis et al. (2007).

• For the luminosity distance δdL, the relative width of error distributions does

not change during observation and variations in the difference between the

90% and 10% levels of the cumulative distributions do not exceed 10%, except

for the initial weeks, when the distribution is much more spread out.

• For the sky localization errors, the width of error distributions increases dur-

ing the final two weeks of observation, by a factor ∼ 2 for the major axis and

a factor ∼ 4 for the minor axis.

3.5.2 Advance warning times for EM searches

From the astronomical point of view, being able to identify with confidence, prior to

merger, a small enough region in the sky where any prompt electromagnetic (EM) coun-

terpart to a LISA inspiral event would be located, is of great interest. With sufficient

“warning time,” it would then be possible to trigger efficient searches for EM coun-

terparts as the merger proceeds and during the most energetic coalescence phase. In

particular, an efficient strategy to catch such a prompt EM counterpart would be to

continuously monitor with a wide-field instrument a single field-of-view (FOV), through

coalescence and beyond. Astronomical strategies for EM counterpart searches are the

focus of a second paper in this series (Kocsis et al., 2007).

Given an angular scale, θFOV, corresponding to the hypothetical FOV of a specific

astronomical instrument, it is thus of considerable interest to determine the value of the
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look–back time tf at which the major axis, minor axis or equivalent diameter of the sky

localization error ellipsoid provided by LISA just reach the relevant θFOV scale. This

would allow one to trigger an efficient search for EM counterparts, in a well defined

region of the sky that can be monitored. I will hereafter refer to this time as the

advance warning time. Note that it is important to differentiate the sizes of the major

and minor axes of the angular error ellipsoid in this context because the eccentricity can

be large, and thus important in assessing optimal strategies for EM counterpart searches

(Kocsis et al., 2007).

For definiteness, I evaluate advance warning times for angular diameters θFOV = 1◦

and 3.57◦ here but generalizations to other θFOV values are obviously possible. The

choice of the latter figure is motivated by the 10 deg2 FOV proposed for the future Large

Synoptic Survey Telescope, or LSST (Tyson, 2002). Figure 3.3 shows advance warning

times for a fixed source redshift at z = 1 and various values of the total SMBH mass,

M . Figure 3.4 shows similar results for various source redshifts, at a fixed value of

M = 2× 106M⊙.
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Figure 3.3 Advance warning times (in days) for equal mass binary inspirals at z = 1, as
a function of total mass, M (in solar units). Best, typical, and worst cases refer to 10%,
50%, and 90% levels of cumulative error distributions for random orientation events, as
before. The advance warning times shown correspond to the values of look–back times
when the equivalent diameter, 2

√
ab, of the error ellipsoid first reaches 1◦ (left panel) or

an LSST-equivalent field-of-view (3.57◦, right panel). In the left panel, the worst case
events are not shown because angular errors are too large even at ISCO. For the largest
mass SMBHs, the maximum observation time (and thus ti) is below one year.

In each case, I consider equal mass SMBH binaries and a maximum observation time

of 1yr (or lower if set by the GW noise frequency wall at 0.03mHz). Each panel in

Figs. 3.3 and 3.4 shows the values of advance warning times at which the equivalent
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Figure 3.4 Same as Fig. 3.3, for a fixed total mass M = 2× 106M⊙ but various values
of the source redshift, z.

diameter 2
√
ab of the localization error ellipsoid drops below the reference θFOV value.

For each case, I show results for cumulative error distribution levels of 10%, 50%, and

90%, labeled “best”, “typical,” and “worst” cases, as before. Figure 3.3 shows that LISA

can localize on the sky events at z = 1 to within an LSST FOV at least one month ahead

of merger, for 50% of events with masses 2× 105M⊙ ≤ M ≤ 3× 106M⊙, and at least 4

days ahead of merger for 90% of events in the same mass range. Figure 3.4 shows that

advance warning times decrease with redshift, leaving at least 1 day ahead of merger for

50% of events with M = 2× 106M⊙, as long as z ∼< 1 for θFOV = 1◦ and as long as z ∼< 3

for an LSST FOV. For events with this mass scale and the LSST FOV, there is a 10%

chance that a 1 day advance warning is possible up to z∼ 5–6.

Figures 3.3 and 3.4 display advance warning times for single one dimensional slices

of the full (M, z) space of potential LISA events. With the HMD method, however,

it is possible to explore the entire parameter space of SMBH inspirals by repeating

the calculation on a dense grid of (M, z) values. I construct a uniform grid in the

(logM, z) plane, with ∆z = 0.1 and ∆ logM = 0.1, and perform MC computations with

3× 103 randomly oriented angles for each grid element. As a result, I obtain a complete

description of the time evolution of sky localization errors in the large parameter space

of potential LISA sources. Figure 3.5 displays advance warning time contours from this

extensive MC calculation, for typical (50%) and best case (10%) events, adopting the

LSST FOV as a reference.

Advance warning time contours are logarithmically spaced, with solid-red contours

every decade and a thick red line highlighting the 10 day contour. Since advance warning

times were computed on a finite mesh, contour levels for arbitrary M and z values were
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Figure 3.5 Contours of advance warning times in the total mass (M) and redshift (z)
plane with SMBH mass ratio m1/m2 = 1. The contours trace the look–back times
at which the equivalent radius (2

√
ab) of the localization error ellipsoid first reach an

LSST-equivalent field-of-view (3.57◦). The contours correspond to the 50% (left) and
10% (right) level of cumulative distributions for random orientation events. The contours
are logarithmically spaced in days and 10 days is highlighted with a thick line.

obtained by interpolation. My interpolated mesh is smooth if tf ∼ 0.1 day, but it gets

edgy for short advance warning time approaching ISCO. Figure 3.5 shows that a 10

day advance warning is possible with a unique LSST-type pointing for a large range of

masses and source redshifts, up to M ∼ 3× 107M⊙ and z∼ 1.9. The right shows how

far the advance warning concept can be stretched, by focusing on the 10% best cases of

random orientation events. In this case a 10 day advance warning is possible up to z∼ 3

for masses around M ∼ 106M⊙. Note that, in both cases, allowing for a warning of just

one day would extend considerably the range of masses and redshifts for which a unique

LSST-type pointing is sufficient.
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Figure 3.6 Same as Fig. 3.5, except for a SMBH mass ratio of m1/m2 = 10.
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These results can also be generalized to unequal-mass SMBH binaries. At fixed

total mass, M , an unequal-mass binary has an instantaneous signal-to-noise ratio that

is reduced because of a lower η value, but it also has a total observation time that

is potentially longer. Localization errors for unequal-mass inspiral events with total

observation times longer than a month (i.e. with η
2/5
0.25(1 + z)M < 1.8× 107M⊙) are

degraded relative to the equal-mass cases discussed so far. For larger total mass, however,

the worsening of errors is mitigated, or even reverted, relative to the equal mass case,

thanks to the longer observation time. The error ellipsoid also becomes less eccentric

thanks to this additional observation time. Figure 3.6 summarizes results on advance

warning times from the same MC computations as in Fig. 3.5, but this time for unequal-

mass SMBH binaries with mass ratio m1/m2 = 10. Despite a systematic degradation

in advance warning times (especially noticeable at low M values), the main effect of

introducing a mass ratio m1/m2 = 10 is to shift advance warning time contours to

somewhat larger values of total mass, M . My main conclusions on advance warning times

are not very strongly affected by the inequality of mass components in the population

of SMBH binaries considered.
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Figure 3.7 Same as the left panels of Figs. 3.5 and 3.6, except for a degraded minimum
detector frequency of fmin = 0.1mHz.

Finally, it is important to understand how sensitive the results are to the LISA de-

tector characteristics. In particular, I examined how advance warning times are affected

by increasing the minimum frequency noise wall or by loosing one of the arms of the

3-arm constellation. Figure 3.7 displays results for fmin = 10−4Hz, for m1/m2 = 1 and

m1/m2 = 10. Increasing fmin mostly reduces the total observation time for high mass

inspirals (ti ∼ f
−8/3
min M

−5/3
z ; see eq. [3.2]) and reduces the signal-to-noise ratio by a small

factor. As a result, the advance warning time contours primarily shift in the (M, z) plane

in the direction of smaller total masses by a factor of ∼ 7, and secondly shift moderately
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(30–50%) to smaller redshifts. Loosing one LISA arm (i.e. using only one of the two

interferometers) most importantly removes the ability of the second datastream to break

correlations in localization errors and also reduces the signal-to-noise by a small factor.

As a result errors do not improve much during the last ∼ 10 days before merger. Com-

pared to the case with two interferometers, contours representing an advance warning

of less than 10 days are shifted to significantly smaller z (especially for the minor axis

of the sky localization ellipsoid), close to the 10–day contour, but warning times beyond

∼ 10 days worsen only moderately. I conclude that even if fmin = 0.1mHz or if only one

of the two interferometers is used, LISA still admits 10–day advance localizations for a

broad range of masses and redshifts, between 105 ∼< M ∼< 2× 106 and z ∼< 1.

3.6 Discussion

I have introduced a novel technique, the HMD method, to compute time–dependent

GW inspiral signals for LISA. The method relies on the fact that LISA’s orbital motion

induces a modulation on timescales that are long relative to the inspiral GW frequency.

Since this modulation is periodic, with a fundamental frequency of f⊕, it can be expanded

in a discrete Fourier sum. In the HMD formalism, dependencies on sky position, orbital

angular momentum orientation, and detector orientation in the LISA signal are inscribed

in time-independent coefficients, while time-dependent basis functions are independent

of these angles. This decomposition helps to reduce the computational cost of Monte

Carlo simulations exploring the time-dependence of source localization errors by orders

of magnitude.

Moreover, the HMD method can be used in conjunction with plausible approxima-

tions to further decrease the computational cost of explorations of the parameter space

of localization errors for LISA inspiral events. In my analysis, I identified two different

characteristic frequency constituents of the signal: the high frequency restricted post-

Newtonian GW inspiral waveform and the low frequency amplitude modulation resulting

from the detector’s orbital motion. In the HMD method, these two components separate

and parameters that depend only on the low frequency modulation (such as the source

position and the orbital angular momentum angle) can be estimated independently of

the other source parameters determined by the high frequency carrier signal. My work-

ing assumption was that cross-correlations among these two sets of parameters must be

much smaller than parameter correlations within either set. This hypothesis is valid
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very generally in the no spin limit for SMBHs, as shown by full Fisher matrix calcula-

tions without such approximations for general relativity (Hughes, 2002a) and alternative

theories of gravity (Berti et al., 2005b).

In order to further examine the validity of my assumptions and the ultimate bound-

aries of my models, and to understand my results, I have constructed illustrative toy

models that I now describe in some detail. These toy models show that the separation

of parameters into various subsets associated with different characteristic frequencies of

the signal is a rather general property, which turns out to be an efficient way of reducing

the computational cost of error estimations for the LISA problem.

3.6.1 Simple toy models

In this section, I discuss very simple toy models which capture the essence of the problem

posed by the time-evolution of parameter error estimations. I then use these models to

answer general questions on the LISA-specific parameter estimation problem.

My harmonic decomposition technique is based on the simple intuition that the angu-

lar information can be deduced from the slow periodic modulation of the high frequency

GW waveform. In § 3.3, I have shown that modulation harmonics with frequencies larger

than 4f⊕ vanish exactly. Here, I discuss the general properties of such a modulation.

In the case of LISA, the high frequency carrier signal has an effective, cycle-averaged

signal-to-noise ratio which monotonically increases with time as SMBH binaries ap-

proach merger. To mimic such events, I also assume in all of my toy models that the

instantaneous signal-to-noise ratio continuously improves throughout the observation.

I seek answers to the following questions:

1. How do mean errors evolve during the final days of observation?

On the one hand, in standard angle-averaged treatments (e.g. Berti et al., 2005b;

Kocsis et al., 2006; Arun, 2006), an evolution of errors with the inverse of the

signal-to-noise ratio is generally assumed. This would suggest a large improve-

ment during the last day of inspiral. On the other hand, the slow modulation

picture suggests just the contrary: not much improvement is expected at late

times when there is effectively very little modulation (Finn & Larson 2005, private

communication).

2. Does the introduction of additional high frequency components in the signal have
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any effect on the estimations of low frequency parameters?

In the GW context, it is of general interest to determine under what circumstances

additional high frequency signal components, such as higher order post-Newtonian

corrections or spin-induced effects, remain decoupled from the determination of

angular and distance information based on the signal amplitude modulation.

3. Are there combinations of signal parameters for which errors improve rapidly in

the last days of observation? If so, what are these combinations? What determines

how many such rapidly–improving combinations there will be?

If the distance dL correlates with the angles, then in principle the volume of the

3D error box can be much smaller than the product of the marginalized errors

δΩ× δdL would imply. Unfortunately, in practice, this is unlikely to help to reduce

the number of false counterparts, because the δz error will be dominated by weak

lensing (Kocsis et al., 2006).

4. How does the width of parameter error distributions evolve with time? Are the best

and worst cases approaching the typical case prior to the final days of observation?

How do I expect the eccentricity of localization error ellipsoid to evolve with time

for LISA?

Here, I restrict the discussion to a brief summary of my findings and direct the reader

to Appendix A.1 for further details on these toy models.

The parameter estimation uncertainties are defined by the correlation error matrix.

For Np parameters, this defines an Np-dimensional error-ellipsoid in the Np-dimensional

parameter space, where parameters are constrained at a given confidence level. Marginal-

ized errors for a given parameter are then related to the projection of this ellipsoid on

the basis vector corresponding to that parameter. Since the principal axes of this error

ellipsoid are generally not aligned with the original parameters, the marginalized errors

can be substantial even if the volume of the error ellipsoid is close to zero. This happens

if the ellipsoid is very “thin” but has a large size in at least one direction. Diagonal ele-

ments of the correlation matrix provide marginalized squared errors on the parameters,

while eigenvalues provide squared errors along the principal axes.

I consider three versions of toy signals to understand how a particular harmonic mode

contributes to the time-dependence of parameter uncertainties and to find answers to

Questions 1–4 above. I start with the simplest toy model and refine this model by adding
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more details and complexity in the successive models. In each case, I discuss general

implications for the model under consideration.

Basic toy model

In my basic toy model, I assume that the true signal is comprised of a constant carrier

signal, which is modulated by a single known-frequency cosine, f⊕:

h(t) = c0 + c1 cos(2πf⊕t), (3.64)

where c0 and c1 are unknown parameters to be estimated. I assume that the noise

level is rapidly decreasing during the observation, mimicking the gradual increase in the

instantaneous signal-to-noise ratio for LISA inspiral signals. The contradictory state-

ments made in relation to Question 1 above can be explored with this model. I find that

marginalized parameter errors scale with the signal-to-noise ratio far away from merger

(i.e. tf ∼> 0.1f−1
⊕ ) but they quickly converge to their final values at late times, even

though the signal-to-noise ratio keeps accumulating. It is possible to derive analytical

formulae for the evolution of parameter errors to fully characterize this behavior (see

Appendix A.1). I find that, even though the error ellipse rapidly decreases in volume, as

the inverse of the signal-to-noise ratio near merger, the error ellipse only shrinks along

one of its dimensions, the semi-minor axis, so that a non-negligible residual uncertainty

remains in the orthogonal subspace (e.g. along the semi-major axis). This residual

uncertainty carries over to final marginalized errors for both parameters. Therefore,

this first toy model verifies the second option in relation to Question 1.: there is no

late improvement because there is very little effective signal modulation, making the

signal-to-noise argument largely irrelevant. However, I find below that this model does

not carry some essential features of the LISA signal which modify somewhat my final

answer to Question 1 (see final toy model below).

Second toy model

In my second toy model, I modify the single frequency signal by postulating two pairs of

unknown amplitudes and phases for two different a priori known frequencies, satisfying

f2 ≫ f1, which modulate an otherwise constant signal:

h(t) =c0 + s1 sin(2πf1t) + c1 cos(2πf1t) + s10 sin(2πf2t) + c10 cos(2πf2t). (3.65)
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The number of unknowns in this model is five: c0, s1, c1, s10 and c10 are the coefficients

of the functions 1, sin(2πf1t), cos(2πf1t), sin(2πf2t), and cos(2πf2t). Again, I assume

that the noise decreases quickly with time before merger, at t = 0. This model is

designed to answer my Question 2 above. In this case, I find that parameter errors

are correlated only with unique frequency components and the constant signal, all the

way to tf ∼> 0.1f−1
2 . The model thus demonstrates how components associated with very

different variation timescales can decouple from each other. Moreover, as for the first toy

model, I find that marginalized parameter errors effectively stop improving past a finite

time before merger (Question 1), which is simply related to their respective frequencies.

As a result, a nonzero residual error remains again, even though the signal-to-noise ratio

continuously increases near merger.

Final toy model

In my final toy model, I insert a few additional features essential to a realistic LISA

data-stream. Firstly, I assume 5 low-frequency harmonics, 1, sin(2πf1t), cos(2πf1t),

sin(4πf1t), (sin 4πf1t), with unknown amplitudes. I also include a high frequency car-

rier signal with known frequency, f2 ≫ f1, but unknown amplitudes in sin(2πf2t) and

cos(2πf2t), for a total of seven free parameters. Secondly, I note that the LISA system

is equivalent to two orthogonal arm interferometers with both detectors measuring po-

larization phases simultaneously (which correspond to the real and imaginary parts of

the amplitude modulation, § 3.4). Therefore, the signal is comprised of 4 simultaneous

data-streams. I incorporate this feature by assuming 4 measurements (i.e. 4 correspond-

ing Fisher matrices) of the signal with 4 given phase shifts (ϕs1

i , ϕ
c1
i , ϕ

s2

i , ϕ
c2
i ; 1 ≤ i ≤ 4)

so that

h(t) = c0 + s1 sin(2πf1t+ ϕs1

i ) + c1 cos(2πf1t+ ϕc1
i )

+s2 sin(2πf1t+ ϕs2

i ) + c2 cos(2πf1t+ ϕc2
i )

+s10 sin(2πf2t) + c10 cos(2πf2t), (3.66)

In this case, I find that 4 principal components improve quickly at late times. As in

my second toy model, the high frequency parameters decouple from the slow frequency

ones, except at very late times when tf ∼> 0.1f−1
2 .

This final toy model allows us to answers all of Questions 1-4 as follows.
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• Answer 1: Four out of 5 slow principal components of the error ellipsoid are quickly

improving with time, while one of them stops improving at tf ∼< 0.1f−1
1 . Therefore,

any parameter with a large projection along this one poor principal component

will stop improving, while parameters nearly orthogonal to it will keep improving

quickly. Thus, both statements made in relation to Question 1 above can in fact

be correct, depending on the connection between a given parameter and the poor

principal component. Typically, I expect marginalized parameter uncertainties to

evolve as (S/N)−1 for tf ∼> 0.1f−1
1 . For smaller tf values, closer to merger, they

would continue to improve, albeit with a shallower slope.

• Answer 2: I find that the introduction of additional high frequency components

does not change the evolution of original parameter estimations as long as the

time-to-merger is larger than a fraction of the time period of the additional high

frequency components.

• Answer 3: As the signal-to-noise ratio increases quickly at late times, rapidly

evolving parameter error combinations are given by the principal components of

the error ellipsoid corresponding to the final situation at merger. With 4 data-

streams, there are 4 such best principal components. Analogously, for the LISA

amplitude modulation given by eq. (3.25), I expect that the 2 polarization phases

for the 2 beam patterns at ISCO can be best determined: (1+cos2 θNL)F I,II
+ (ΩISCO)

and cos θNLF
I,II
× (ΩISCO). (In terms of ecliptic angular variables, these are the real

and imaginary parts of the combination given by eq. (3.34).)

• Answer 4: The widths of error distributions for slow parameters do not change sig-

nificantly as long as tf ∼> 0.1f−1
1 . During this final stretch of time before merger,

however, one of the principal components stops improving and the major axis of

the error ellipsoid freezes. Since the physical parameters can be considered to be

randomly oriented with respect to the ellipsoid axes, distributions of marginalized

errors suddenly start broadening for tf ∼< 0.1f−1
1 , with a worst case relative ori-

entation leading to very little improvement and a best case relative orientation

corresponding to a scaling with (S/N)−1.

3.6.2 Implications for LISA

These simple toy models offer a general interpretation of the time dependence of LISA’s

parameter estimation errors for source localization. The LISA data stream is described
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by Np1 = 5 physical parameters, pslow, which are not the harmonic coefficients themselves

but determine these coefficients, gj (or conversely, the mode expansion coefficients gj

determine the physical parameters pslow; see § 3.3). Neglecting Doppler phase and spin

precession effects, 2Jmax + 1 = 9 modes determine the signal by eqs. (3.41,3.42). In

principle, any Np1 = 5 of the gj mode amplitudes uniquely determine the physical

parameters, pslow. However, in the presence of noise, each of these modes are uncertain

and the combination of all modes helps in reducing the estimation errors of the pslow

variables.

The key implication of my toy models for LISA is that the estimation of low frequency

gj modes with low |j| are effectively decoupled from the high frequency signal, unless the

merger is within ∼ 0.1 times the cycle time of the fast-oscillating signal. I have shown

that the HMD of the orbital modulation consists purely of low-order harmonics, with

|j| ≤ 4. In comparison, the high frequency GW phase has a much higher frequency,

corresponding to j > 1000, and this high frequency signal’s cycle time is greater than

the time to merger throughout t ∼> tISCO. Hence, physical parameters pslow will remain

decoupled from parameters pfast, all the way to ISCO. This finding is independent of

details of the waveform and the modulation, in agreement with the results of Berti et al.

(2005b) which show that decoupling occurs independently of the details of the hc(t)

signals, including the modified inspiral waveforms of alternative theories of gravity. In

terms of post-Newtonian expansions, only terms above second order have cycle times as

large as the cycle time of the amplitude modulation. These terms are responsible for

the small cross-correlations of the two sets of parameters found by Hughes (2002a).

In this work, I have not considered spin precession effects, but Vecchio (2004) and

Lang & Hughes (2006) find that spin precession effects can help improve the final lo-

calization errors by a factor of ∼ 3. Spin precession cycle times decrease continuously,

become of order a few days or less during the last week prior to merger, and of order

hours during the last day of inspiral. Therefore, according to my simple models, I ex-

pect spin precession effects to improve the source parameter estimation errors especially

during the final two weeks before ISCO. During that period of time, in the absence

of spin effects, parameter uncertainties (especially the sky position major axis and the

luminosity distance) cease to improve when using only the amplitude modulation.

The best-determined parameters at ISCO are, approximately, the independent de-

tector outputs at ISCO. These are the real and imaginary parts of hI,II
1 (p1), i.e. d−1

L (1 +

cos2 θNL)F I,II
+ (Ω) and d−1

L cos θNLF
I,II
× (Ω) (see Appendix A.1.4). These are the 4 inde-

pendent combinations of 5 physical parameters p1 which correspond to the eigenvectors
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of the error covariance matrix following the steep evolution ∝ (S/N)−1 all the way to

ISCO. I refer to the fifth independent combination, which is orthogonal to these best

eigenvectors, the “worst” eigenvector, since for this combination, the evolution ceases to

improve as (S/N)−1 within ∼ 0.1× (amplitude modulation cycle time) of merger. It is

straightforward to obtain this worst combination explicitly by using the 4 other eigenvec-

tors and Gram-Schmidt orthogonalization (but I have not done this in practice). Since

the highest frequency harmonic of the slow modulation is for j = 4, the corresponding

cycle time is yr/4. Thus, I expect errors will stop improving roughly 1–2 weeks prior

to merger. Distributions of errors will quickly broaden during these final stages of ob-

servation before ISCO. Simply scaling errors with (S/N)−1, as in the angle-averaged

formalism (e.g. Berti et al., 2005b; Kocsis et al., 2006), is acceptable if one studies the

evolution of parameter errors at tf ∼> 2 weeks, or if one only focuses on the best case

parameter combinations. In general, the exponent in the (S/N) scaling decreases as one

approaches merger time depending on how close the particular combination of angles

considered is to the worst combination.

My findings for the eccentricity evolution of LISA’s sky localization error ellipsoid

can also be understood with the simple toy models. In fact, I found this behavior to be

expected for any model signal with relative instantaneous signal amplitude increasing

quickly with time, e.g. t−α, α ∼> 2. In this case, the principal axes of the general param-

eter error ellipsoid separate near tf = 0. There are a limited number of principal errors

which rapidly decrease to zero near tf = 0, while others “freeze out” at a time related to a

fraction of the cycle time of the particular waveform (∼ 0.1Tcycle if ti > Tcycle). For LISA,

there are 5 variable parameters, pslow = (dL, θN , φN , θL, φL), and estimation uncertainties

of 4 combinations of these parameters, d−1
L (1 + cos2 θNL)F I,II

+ (Ω), d−1
L cos θNLF

I,II
× (Ω),

improve quickly with (S/N)−1. These combinations correspond to the best 4 principal

axes of the 5-dimensional error ellipsoid. The remaining 5th principal axis does not im-

prove as (S/N)−1, but rather stops improving at a fraction of the last modulation cycle

time. The two dimensional sky position error ellipsoid is the projection of the general

5-dimensional error ellipsoid on the (θN , φN) plane. This plane will generally not be

aligned with the principal axes of the 5-dimensional ellipsoid. In a typical case, there-

fore, there will be a nonzero projection on the worst principal component and the sky

position ellipsoid will stop shrinking along the worst principal component. This explains

why the major axis, 2a, ceases to improve and the eccentricity increases close to merger.

According to this argument, it is somewhat surprising to find that the minor axis,

2b, can stop improving much before ISCO. Figure 3.2 shows that this happens in the
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worst 10% of all cases for randomly chosen source angular parameters. The reason

for this is that, in some cases, not all rapidly improving “best” principal components

have a small absolute error at ISCO. For example, consider an edge-on binary inspiral

(cos θNL ≈ 0). Since two of the quickly improving parameters are simply proportional

to cos θNL, the errors will be very large for these parameters. Thus, depending on the

relative orientation of the detector and the source at ISCO, there can be large absolute

errors in some cases even for the best combinations of parameters. In short, both axes

of the sky position error ellipsoid can stop improving at late times in those cases when

LISA is oriented in its least favorable direction at ISCO.

3.7 Conclusions

I have developed a new harmonic mode decomposition (HMD) method to study the

feasibility of using LISA inspiral signals to locate coalescing SMBH binaries in the sky, as

the mergers proceed. According to my extensive HMD survey of potential LISA sources,

it will be possible to trigger large field-of-view searches for prompt electromagnetic

counterparts during the final stages of inspiral and coalescence. My results indicate,

for instance, that for a typical z∼ 1 merger event with total mass M ∼ 105 − 107M⊙, a

10-day advance notice will be available to localize the source to within a 10 deg2 region

of the sky. The advance notice to localize the source to a 10 times smaller area of

1 deg2 is < 1 day for the typical event, suggesting that a wide–field instrument of the

LSST class, with a 10 deg2 field-of-view, may offer significant advantages over a smaller,

1 deg2 field-of-view instrument for observational efforts to catch prompt electromagnetic

counterparts to SMBH binary inspirals.

The robust identification of such electromagnetic counterparts would have multiple

applications (Holz & Hughes, 2005; Kocsis et al., 2006), from an alternative method

to measure cosmological parameters to precise measurements of merger geometries in

relation to host galaxy properties. If such electromagnetic counterpart searches can

be implemented effectively and successfully, LISA could become an extremely valuable

instrument for astrophysics and cosmology, beyond the original general relativistic mea-

surement goals. Given the advance warning time capabilities established here, effective

strategies for electromagnetic counterpart searches, including the concept of partially

dedicating a ∼> 10 deg2 field-of-view fast survey instrument of the LSST class, are con-

sidered in detail in a separate investigation (Kocsis et al., 2007).



Chapter 4

Detection Rate Estimates of Parabolic

Encounters

4.1 Introduction

Interferometric gravitational-wave (GW) detectors LIGO, GEO, TAMA, and VIRGO

are searching for GW signals with unprecedented sensitivity (Abbott et al., 2005a,b,d;

Acernese et al., 2005; Ando, 2005; Grote et al., 2005; Hughes et al., 2001). For LIGO,

the noise levels are already reaching the goal level necessary for the detection of the

strongest signals. It is very important to analyze the detection capabilities of these de-

tectors and to estimate the rates of potentially detectable GW signals. There is already

a considerable list of possible detection candidates (for a review see Cutler & Thorne,

2002): the inspiral of neutron star (NS) or black hole (BH) binaries, the tidal disruption

of NS by BH in NS–BH binaries, BH–BH merger and ringdown, low-mass X-ray bina-

ries, pulsars, centrifugally hung-up proto neutron stars in white dwarf accretion-induced

collapse, supernova core collapse, gamma ray bursts, and the stochastic background.

Here, I consider an additional possibility, GWs produced by unbound orbits. As I will

show, among unbound orbits near-parabolic encounters (PEs) produce gravitational ra-

diation with typical frequencies appropriate for detection with terrestrial facilities. For

close PEs the gravitational radiation is short and intensive, that is observable to large

distances. Here, I estimate the expected event rate of detections for specific current and

near-future GW detectors.

Initial order-of-magnitude estimates on the detectability of GWs emitted during

73
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scattering and near collisions of stellar mass compact objects in active galactic nu-

clei and globular clusters (GCs) were made by Dymnikova et al. (1982). Although their

study primarily focused on BH–star, star–star encounters, and did not provide numbers

for BH–BH encounters, they identified these encounters to be “quite rare”. However,

Dymnikova et al. (1982) used an overly simplified GC model in which the velocities and

masses of all objects were identical, and the spatial distribution was assumed to be ho-

mogeneous. I extend the detection rate estimates to account for the stellar BH mass

function, mass segregation, and mass-dependent relative velocities. I show that this

improvement significantly increases the event rate, by approximately a factor of 102.

In addition, interferometric GW detector technology has improved greatly and detailed

sensitivity curves are now available. Dymnikova et al. (1982) estimated a maximum vis-

ible distance of Dmax = 20Mpc, which is a factor of ∼ 100 less than Advanced LIGO’s

(AdLIGO) capabilities (see Figure 4.4 below), i.e. a factor of ∼ 106 less in the accessible

volume of sources. Combining these factors, my detection rate estimates yield ∼ 108

times larger results for AdLIGO.

Gravity waves emitted during PEs are also important for creating relativistic orbits

by gravitational radiation reaction around the supermassive black holes (SMBH) in the

centers of galaxies. The GWs emitted by the later inspiral of the star or compact object

around the SMBH are possibly detectable by the future space detector LISA (Freitag,

2003; Gair et al., 2004; Sigurdsson & Rees, 1997) and also by ground-based detectors for

highly eccentric orbits (Hopman & Alexander, 2005). Here, I do not consider encounters

with SMBHs, but focus on the direct detection of GWs from unbound orbits of two stellar

mass compact objects (COs).

Stellar mass unbound orbit encounters are expected to be most likely from dense star

clusters with a large fraction of COs. Among regular star systems, these features are

carried by galactic nuclei and GCs, where central densities reach 104 – 107 pc−3 within

a region of 0.5 – 3 pc (Pryor & Meylan, 1993), the inner regions contain a CO fraction

of q ∼> 1/2 (Sigurdsson & Phinney, 1995). Here, I estimate PE event rates for GCs.

As compared to other GW burst sources, the big advantage in detecting PE events is

that the possible signal waveforms are much more reliable as the physics behind them is

well understood. The waveforms are known analytically for the case of arbitrary masses

moving with arbitrary velocities but at small deflection angles (often referred to as grav-

itational bremsstrahlung, see Kovacs & Thorne 1978), arbitrary unbound orbits but low

velocities in the Newtonian approximation (Turner, 1977), in the post-Newtonian ap-

proximation (PN, Blanchet & Schafer, 1989, including corrections O(v2)), in the 2PN
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approximation (O(v4) Blanchet et al., 1995; Mikoczi et al., 2005), and most recently, in

the 3PN approximation (Blanchet et al., 2005, O(v6)), and the exact numerical solution

is available for extreme mass ratios using a Schwarzschild background approximation

(Martel, 2004), and finally, for head-on collisions with large velocities (D’eath & Payne,

1992). Thus, PE waveforms are available for a very large portion of the parameter space.

Waveform templates can be constructed a priori, similar to inspirals. The prior knowl-

edge of the possible waveforms allows the method of matched filtering detection, which

helps to reduce the minimum signal-to-noise ratio necessary for a confirmed detection

(Flanagan & Hughes, 1998).

This chapter is organized as follows. In Section 4.2, I summarize the relevant charac-

teristics of interferometric GW detectors. In Section 4.3, I review the PE waveforms that

I adopt. In Section 4.4, I describe the population models that are necessary to estimate

the scalings of parameters and the overall PE event rates. In Section 4.5, I derive the

expected number of PE event rates, calculate their maximum distance of detection, and

estimate the implied rates of successful detections. Finally, in Section 4.6 I summarize

the conclusions and in Section 4.7 discuss the limitations and the implications of this

work.

4.2 Overview of Gravitational-wave Detectors

The new generation of GW detectors rely on interferometric monitoring of the relative

(differential) separation of mirrors, which play the role of test masses, responding to

space-time distortions induced by the GWs as they traverse the detectors. The effect of

a GW is to produce a strain in space, which displaces the mirrors at the ends of the arms

by an amount proportional to the effective arm length and GW strain. For GWs incident

normal to the plane of the detector, and polarized along the arms of the detector, the

mirrors at the ends of the two arms experience differential motion. Waves incident from

other directions and/or polarizations also induce differential motion, albeit at a smaller

level.

Presently, there is an operational international network of first generation interfer-

ometric GW detectors: InLIGO, VIRGO, TAMA, and GEO (see Section 4.1 for refer-

ences). The design of advanced terrestrial GW detector AdLIGO and space detector

LISA is well on the way. There are also plans for a new generation of low-frequency

underground detectors especially sensitive for lower frequencies (DeSalvo, 2004), which
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might be especially sensitive to PEs, which I will discuss in a followup work in de-

tail. Finally, there are plans for possible future improvements of space detectors: De-

cihertz Interferometric Gravitational-wave Observatory (DECIGO) (Seto et al., 2001),

Advanced Laser Interferometer Antenna (ALIA) and the Big Bang Observer (BBO)

(Crowder & Cornish, 2005). Their sensitivities, detection frequency bands and capabil-

ities are quite different. For my purposes, a good approximation is to use: (1.) the

InLIGO and VIRGO sensitivity goal (nearly reached) to assess present capabilities; (2.)

the AdLIGO sensitivity goal to assess future capabilities of ground based detectors; (3.)

the LISA sensitivity goal to assess future capabilities of initial space based detectors;

and (4.) the Next Generation LISA sensitivity goal to assess the capabilities of possible

further extensions to space detectors.
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Figure 4.1 Goal sensitivity curves for interferometric GW detector facilities: InLIGO,
VIRGO, AdLIGO, LISA, and NGLISA.

The goal RMS noise density per frequency interval for the various detectors, includ-

ing instrumental and confusion noise, is plotted on Figure 4.1. For LIGO I adopt Abbott

(2004), for VIRGO I adopt Acernese et al. (2005) but for simplicity discard the narrow

features1, for AdLIGO I adopt the noise estimates from its website2, and for LISA, I

1http : //www.virgo.infn.it/senscurve/
2http : //www.ligo.caltech.edu/advLIGO/scripts/ref des.shtml
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utilize the online sensitivity curve generator 3 for the instrumental noise, and adopt the

confusion noise estimate from Barack & Cutler (2004b). The noise levels of possible

extensions to LISA named the “Next Generation LISA” (NGLISA) are also provided by

the sensitivity curve generator, which I also include in all of my calculations. This is very

similar to the planned sensitivity curve of DECIGO (Seto et al., 2001, see the more con-

servative case therein) and is just halfway between ALIA and BBO (Crowder & Cornish,

2005, a factor of 3 difference in sensitivity from both).

4.3 Parabolic Encounter Waveforms

The GW signal waveform for PE is available in a wide range of approximations (see

Section 4.1). I adopt Turner (1977) for the angular averaged waveforms, for which

the interacting masses travel on classical Newtonian trajectories and emit quadrupole

radiation. Other features such as spin-spin, spin-orbit interactions, and gravitational

recoil, etc., are higher order perturbations which carry only a small total signal power

in typical cases. Therefore for the sake of calculating the signal-to-noise ratio, it is a

sufficient first-order approximation to use these waveforms.

Illustrative examples of PE waveforms can be found in Turner (1977) (see Fig. 4 and

7 therein). The waveforms are generally constituted of a large amplitude single peak

or a jump in the time domain with characteristic time scale t0, related to the relative

angular velocity at the minimum separation ω0 = v0/b0 = 1/t0. Here v0 is the relative

velocity at the closest point, and b0 is the corresponding minimum separation. Turner

(1977) provides a closed analytical formula for the total GW radiation energy spectrum

dE/df . The spectrum is wide-band, for parabolic orbits it is zero at f = 0, it has a

maximum near f0 = ω0/2π and a half-width ∼ 1.5f0.

The characteristic signal amplitude is obtained from the GW energy spectrum as

(Flanagan & Hughes, 1998; Thorne, 1987)

h(f) =

√
3

2π

G1/2

c3/2

1 + z

dL(z)

1

f

√
dE

df
[(1 + z)f ], (4.1)

where z is the redshift, dL(z) is the cosmological luminosity distance (Eisenstein, 1997),

and dE/df [(1 + z)f ] is the total GW emitted energy of the source at the emitted

3http : //www.srl.caltech.edu/∼ shane/sensitivity/
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frequency. The orientation averaged signal-to-noise ratio is

〈
S

N

〉
=

√
4

5

∫ ∞

0

|h(f)|2
Sn(f)2

df (4.2)

where h(f) is the characteristic signal amplitude, equation (4.1) and Sn(f) is the one-

sided spectral noise density (see Section 4.2 for references for the particular detectors).

Note that equation (4.2) refers to an angle-averaged SNR obtained from the cube-root of

an average of cubed signal amplitudes over different possible orientations of the source

and interferometer. Since event rates roughly scale with volume, i.e. distance cubed

or (S/N)−3, this prescription is useful for estimating event rates (Thorne, 1987). For

signals with optimal orientations, the coefficient 4/5 in equation (4.2) is changed to

4. Note furthermore, that the 4/5 factor is applicable for the detection rate using a

single interferometric GW detector. There are already 4 interferometric GW detectors

on Earth (see Section 4.2), and it is possible that there will be a lot more in the future.

A coincident analysis with multiple detectors can be used to improve the efficiency by

increasing the total signal-to-noise ratio and also by insuring that at least one detector is

close to the optimal orientation (Jaranowski et al., 1996). For this reason, the coefficient

4/5 in equation (4.2) is most likely pessimistic. For 1 detector in the optimal orientation

and K − 1 identical detectors in random orientations a quick scaling of the coefficient is

∼ 4 + (4/5)(K − 1)1/2. On the other hand, a relatively large SNR might be required to

keep the false alarm rate at a sufficiently low level. For a conservative estimate on the

PE rate I do not modify the 4/5 factor in the definition of SNR and evaluate results for

SNR = 5.

The PE waveforms can be obtained from equation (4.1) by substituting the E(f)

relationship specific for PEs using Turner (1977):

h(f, f0) =

√
85π2/3

25/3

G5/3

c4

Mz
5/3

dL

f
2/3
0z

f

√
F (f/f0z) (4.3)

where Mz = (1 + z)(m1m2)
3/5/(m1 +m2)

1/5 is the redshifted chirp mass if m1 and m2

are the masses of the interacting objects, f0z = f0/(1 + z) is the redshifted character-

istic frequency, f denotes the observed GW frequency, and F (x) is the Turner (1977)

normalized dimensionless energy spectrum for dimensionless frequency x = f/f0z, for

which
∫∞
0
F (x) dx = 1.

Equation (4.3) is the leading order (i.e. Newtonian) approximation to the GW wave-
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form, h(f, f0). A remarkably advantageous feature of the waveform in this approximation

is that it depends on only a single combination of the orbital parameters, f0z. Although

I need only utilize this form, equation (4.3), I briefly note that it is also possible to

express the waveform with the separation at closest point b0 in the center of mass frame

(Turner, 1977):

h(f, b0) =

√
85

4

G2

c4

(1 + z)m1m2

dL b0

1

f

√
F [f/f0z(b0)]. (4.4)

Here f0z(b0) is the redshifted characteristic frequency for fixed initial velocity as a func-

tion of b0. The GW amplitude spectrum h(f, b0) is roughly flat at low frequencies

f < f0z , and decreases for higher frequencies. Equation (4.4) shows that h(f, b0) scales

with b−1
0 for frequencies larger than the cutoff at ∼ f0z.

Modifications are necessary for relativistic encounters. The relativistic gravitational

radiation waveforms and energy output has been calculated by Martel (2004) in the

quadrupole approximation for a test particle approaching a Schwarzschild black hole

from infinity on a quasi-parabolic geodesic4. In case the periastron distance b0 is close to

the unstable circular orbit, the GW energy is significantly increased (it has a logarithmic

singularity at λ = 2, where λ ≡ b0/RSH and RSH is the total Schwarzschild radius, and a

factor of ∼ 10 increase for λ = 2.01 or a factor of 2 for λ = 3). I adopt the fitting formula

of Gair et al. (2005), which is correct within 0.1% for orbits that avoid a collision, and

scale the amplitudes of the Turner (1977) waveforms equation (4.3) according to the

increase of the GW energy, Erel(λ)/Enr(λ).

h(f, f0) =

√
85π2/3

25/3

G5/3

c4

Mz
5/3

dL

f
2/3
0z

f

√

F

(
f

f0z

)√
Erel(λ)

Enr(λ)
(4.5)

Note once again, that the dimensionless periastron distance, λ, is uniquely specified by

the characteristic frequency, f0. I derive explicit formulae for f0(λ) in the non-relativistic

Newtonian and relativistic geodesic approximations, when considering the dynamics of

PEs in Section 4.5.1 and Section 4.5.2 below. Quite remarkably, the characteristic

frequency of the waveform is unchanged for relativistic orbits. Therefore, I do not

explore the effects of relativistic modifications in the shape of the GW signal waveform,

I restrict only to correcting the amplitude.

4I continue to denote as “quasi-parabolic” or simply “parabolic” encounters that have asymptotically
zero velocity at infinity. Note that the trajectories are generally quite different from parabolas in the
highly relativistic regime (for illustration, see Martel, 2004).



80 Detection Rate Estimates of Parabolic Encounters

4.4 Population Models

The major contribution to the PE event rate is expected from dense star clusters with

a large CO fraction. The most important systems carrying these properties are possibly

GCs and galactic nuclei. Here, I focus on GCs, but simple analytical scaling of the

results allows a straightforward extension to galactic nuclei or any other population of

spherical star systems.

The spatial distribution of GCs exactly traces the distribution of galactic halos

(Chandar et al., 2004) in the local universe. In this section I summarize the galaxy

distribution and the GC abundance per galaxy, and describe the GC models which I

adopt.

4.4.1 Galaxy Distribution

I utilize the local distribution of galaxies (Tully, 1988). The accumulated number of

galaxies to distance D can be well approximated by

Ngal(D) =





N1 (D/Mpc)0.9 for D ≤ 3Mpc

N2 (D/3Mpc)1.5 for 3Mpc < D < 16Mpc

N3 (D/16Mpc)2.4 for 16Mpc < D < 60Mpc

N4 (D/60Mpc)3 for D > 60Mpc

, (4.6)

where N1, N2, N3, and N4 are 23, 62, 1100, and 26000, respectively. The average density

of faraway galaxies is 0.03Mpc−3, but the local galaxy abundance is much denser than

average. In equation (4.6) Ngal(D) has a 45% jump at the Virgo cluster at D = 16Mpc.

4.4.2 Globular Cluster Abundance

Following Portegies Zwart & McMillan (2000), I adopt n̄gc = 2.9Mpc−3 for the average

GC abundance in the universe. I roughly account for the clustering of GCs in the local

universe by assuming that the distribution of GCs follow the abundance of galaxies.

This assumption is consistent with observations (Chandar et al., 2004; Goudfrooij et al.,

2003) suggesting that the population of GCs represent a universal, old halo population
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that is present around all galaxies. The number of GCs within a distance D is then

Ngc(D) = ygcNgal(D), (4.7)

where ygc is a scaling constant relating the abundance of GCs and galaxies. Using the

large scale average n̄gc = 2.9Mpc−3 (Portegies Zwart & McMillan, 2000) and n̄gal =

0.029Mpc−3 equation (4.6) for D > 60Mpc I get ygc = 100. Alternatively, ygc can be

interpreted as the number of GCs per galaxy averaged over all morphological types.

Concerning PE detection rates, I shall show in Section 4.5.3 that typical observation

distances for terrestrial detectors are larger than the clustering scale given by equa-

tion (4.6). Therefore, the results are sensitive to mainly the average abundance and are

only slightly increased by the local clustering of GCs.

The value n̄gc = 2.9Mpc−3 for the average abundance is a conservative assumption.

In their quick estimate Portegies Zwart & McMillan (2000) derived this value by adding

up the contribution of galaxies of morphological types Sab, E-S0, and blue ellipticals.

Recently, 12 nearby edge on spiral galaxies were examined, resulting in much larger

numbers, reaching ∼ 1000 − 1300 GCs for these particular galaxies (Chandar et al.,

2004; Goudfrooij et al., 2003). In addition to the morphological types considered in

Portegies Zwart & McMillan (2000), dwarf elliptical (dE) galaxies also contribute to the

overall GC numbers (van den Bergh, 2006). The GC content of 69 dwarf elliptical (dE)

galaxies have been estimated to host about a dozen GCs per dE galaxy (Lotz et al.,

2004). Therefore, my results on detection rates correspond only to lower limits, which

has to be scaled linearly with n̄gc when more detailed estimates become available.

The GC distribution given by equations (4.6–4.7) is only valid for sub-cosmological

scales. Assuming that D denotes the luminosity distance, dL, in equations (4.6–4.7)

which is a direct observable using the GW amplitude, the change in the cosmological

volume element decreases the average density.

Ngc(dL) = 4π

∫ z(dL)

0

∂V

∂z ∂Ω
ygcn̄gal dz (4.8)

I adopt the cosmological volume element (Eisenstein, 1997) for a ΛCDM cosmology

with (Ωm,ΩΛ, h) = (0.3, 0.7, 0.7) consistent with recent observations of the Wilkinson

Microwave Anisotropy Probe and the Sloan Digital Sky Survey (Tegmark et al., 2004b).

I find that the uncorrected volume element d2
LdΩddL is reduced by a factor of 0.7 for

z = 0.1 (dL = 0.5 Gpc) and by a factor of 0.053 for z = 1 (dL = 7 Gpc). Since GCs are
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believed to represent an old halo population in galaxies, I do not account for additional

possible cosmological evolution of the comoving GC abundance.

4.4.3 Globular Cluster Models

Here I define the GC models that I use to obtain typical PE parameters and event rates.

First I define the common features that are the same for both of my models. I assume

a total of N tot stellar mass stars, mstar = M⊙, spherically distributed within a typical

radius Rgc. Also within the cluster, is a CO population consisting of NCO ≡ qN tot

objects with q ≪ 1 that move in the background gravitational potential of the stars. I

define the “typical CO mass” as 〈mCO〉 = 10M⊙. I adopt typical values of N tot = 106,

Rgc = 1 pc, NCO = 103, with q = 10−3, and 〈m〉 ≃ M⊙ (Djorgovski & Meylan, 1994;

Miller, 2002; Portegies Zwart & McMillan, 2000).

I construct two different models for the distribution of mass, spatial coordinate, and

velocities of stars. Model I is a simple plausible model to get the scaling of PE event rates

on different cluster parameters. Here I assume a homogeneous spherical distribution, and

the COs within the cluster have the same mass and magnitudes of velocities. In Model

II, I refine the assumptions to account for the distributions of masses, mass segregation,

and relative velocity distributions.

By comparing Models I and II, I find that while Model I gives the correct Rgc, N
tot,

NCO, and f0 scalings, it underestimates the total event rate of a single GC by 2 orders

of magnitudes. The comparison of Models I and II is necessary (i) to understand the

origin of the large increase in PE event rates as compared to Dymnikova et al. (1982),

and (ii) to understand the impact on the BH mass function of GCs on PE event rates. It

is therefore emphasized that the GC model assumptions have a crucial importance when

determining the PE event rate. I believe that my Model II includes all of the essential

features of GCs for the assessment of PE rates, and uncertainties are comprised of the

uncertainties in the model parameters rather than additional fundamental processes5.

5For example, details like bound binary populations and interactions are not essential for PEs, and
Spitzer instability and core collapse can be accounted for by choosing my model parameters accordingly
(see Section 4.7.3 for a discussion).
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Model I

For the most simple model, the spatial distribution is assumed to be uniform within a

characteristic radius Rgc, and it is assumed that all COs have the same mass mCO =

10M⊙ and magnitude of velocity vvir. The orientation of velocities is isotropic, implying

a velocity dispersion of σ ≃ vvir. For this simple model, I estimate the relative velocity

distribution of COs to be the same as the individual velocities vrel ≃ vvir. The charac-

teristic velocities can be obtained from the virial theorem for a uniform distribution of

mass6:

vvir =

√
3

5

GN tot〈m〉
Rgc

(4.9)

The PE event rate is calculated as the rate of scattering on a fixed target lattice,

with incident velocity vvir.

Model II

I improve Model I with the following factors. The validity and motivation of these

assumptions is discussed below the list.

1. I assume an equal number of NSs and BHs NNS = NBH. I introduce gBH(m) =

0.5[ln(mmax/mmin)]
−1m−1 for the fractional distribution of BH masses among COs

with mass m per mass interval dm, in the range mmin < m < mmax, with∫
gBH(m)dm = 0.5. I define the NS mass distribution gNS(m) as a Gaussian

distribution with norm 0.5, mean 1.35M⊙, and variance 0.1M⊙. Finally I define

the CO distribution by gCO(m) = gBH(m) + gNS(m), which has a unit norm. For

definiteness, I take NBH = 500, mmin = 5M⊙, and mmax = 60M⊙, implying that

〈mBH〉 ≃ 20M⊙ and 〈mCO〉 ≃ 10M⊙, but also calculate detection rates for more

general BH mass distributions. The PE detection rates are practically independent

of the actual total number and distribution of NSs.

2. I account for the mass segregation by assuming thermal equipartition among COs,

objects with mass m have a velocity vm = (m/〈m〉)−1/2vvir, and are confined

6There is a similar result for a spherical star system of polytropic distribution with a root mean
square radius R. The only difference is in the 3/5 factor of Eq. 4.9, which becomes 1/2 in that case (e.g.
Saslaw 1985).
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within a radius, Rm = (m/〈m〉)−1/2Rgc, while regular stars are distributed uni-

formly within a sphere of radius Rgc, as in Model I. Since N ≫ NCO, the back-

ground gravitational potential is determined by regular stars. See Figure 4.2 for

an illustration. For core collapsed models a modified scaling is necessary (see text

below).

3. The relative velocity for COs with masses m1 and m2 is assumed to be vrel ≡ v12 =

[(m−1
1 +m−1

2 )〈m〉]1/2vvir.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

R1

R2

Rgc

m2, N2, v2

m1, N1, v1

Figure 4.2 Encounters for Model II. More massive COs m1 > m2 are distributed uni-
formly within a sphere of smaller radius R1 < R2 and have smaller velocities. PEs
between COs with m1 and m2 can take place within R1. The relative velocity before
the interaction is v∞ = v12(m1, m2). Note that Model II assumes a continuous mass
function, for which N1 and N2 are in fact infinitesimal.

The BH mass distribution is crucial for the analysis, since signal rates scale with m19/3

(see Section 4.5 and the appendix below). Unfortunately, the analysis of BH mass func-

tions have not yet converged. Recent X-ray observations display evidence for 20 galactic
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BHs with masses between 4 ∼< m/M⊙ ∼< 14 (Casares, 2006), and ∼ 45 ultra-luminous

X-ray sources are identified with intermediate-mass black holes (IMBHs) with masses

m = 102 – 104M⊙ (Blecha et al., 2006; Gebhardt et al., 2005; Miller & Colbert, 2004;

Ptak & Colbert, 2004). Theoretical predictions from two-dimensional simulations of

stellar core collapse (Fryer & Kalogera, 2001) lead to masses smaller than 20M⊙ with

very different distributions depending on the assumptions (fraction of explosion energy

used to unbind the star, stellar winds, mass transfer after helium ignition). Sophisticated

simulations of the initial phase of rapid star evolution assuming a lower metallicity for the

progenitor stars (weaker stellar winds) appropriate for GCs and including a large fraction

of binaries, collisions, and accretion leading to the mass buildup of BHs imply an initial

smooth decreasing distribution of stellar-mass BHs with masses up to ∼ 60 – 100M⊙

(Belczynski et al., 2006) depending on model assumptions and cluster environments. Re-

sults are valid for timescales short compared to later dynamical evolution of the cluster.

However, the final fate of the cluster remains highly uncertain. In small GCs, dynamical

interactions of binaries might eject a significant portion of the stellar-mass BH popula-

tion (O’Leary et al., 2006; Portegies Zwart & McMillan, 2000; Sigurdsson & Hernquist,

1993). Following Miller (2002) and Will (2004) I adopt gBH(m) ∝ m−1 leaving the mini-

mum and maximum masses free parameters. However, most recent population synthesis

simulations (Belczynski et al., 2006) typically yield steeper BH mass functions. For this

reason I felt it important to compute results for other distributions gBH(m) ∝ m−p with

p = 0, 1, and 2, as well. Concerning the other parameters, in my standard model I take

mmin = 5M⊙ and mmax = 60M⊙, for which 〈mBH〉 ≃ 20M⊙ and 〈mCO〉 ≃ 10M⊙, and

assume NBH = 500, but also calculate results for other NBH, mmin, and mmax values.

The NS mass distribution that I utilize is supported by observations of 26 radio

pulsars and 4 X-ray binaries (Postnov & Prokhorov, 2001, and references therein). The

distribution is sharply peaked around 1.35M⊙. My assumption on the total number of

NSs (NNS = 500) is somewhat arbitrary, values could be higher or lower depending on

what fraction of NSs are ejected by kicks during their formation. My detection rate

estimates can be scaled to the appropriate value using νNS−NS ∝ N2
NS and νBH−NS ∝

NNSNBH (see Section 4.5 below). Note however, that in Section 4.5 I show that NS

interactions contribute a negligible fraction of the PE event rate (see Figures 4.6 and

4.7 below).

Note that I do not consider encounters between white dwarfs (WDs). The detection

of PEs between WDs are even worse than for NSs, since WD masses are even smaller

(Binney & Tremaine, 1987). My final results show that the PE detection rates roughly
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scale with ∼m8.33, implying that rates are enormously suppressed for WDs: by a factor

of ∼ 1015 relative to 50M⊙ BHs, which are typical for detection (see Figure 4.6). More-

over, WDs are disrupted by tidal torques for close encounters, at sub-Hz frequencies.

Therefore, PEs of WDs are completely invisible for terrestrial detectors.

The second improvement is to account for mass segregation. The differentiation of

the stellar population with mass within the cluster core is a consequence of thermal equi-

librium (Binney & Tremaine, 1987). Objects with masses larger than 10M⊙ had enough

time to relax to thermal equilibrium within the lifetime of the GCs (Farouki & Salpeter,

1982). This means that the kinetic energies of each of the component stars are drawn

from the same distribution, implying that the typical speed of an object of mass m is

vm = (m/〈m〉)−1/2vvir, causing the object to sink to the core of the cluster. For a nearly

homogeneous distribution of background stars, this implies that the maximum radius

available to a given mass is Rm = (m/〈m〉)−1/2Rgc (Binney & Tremaine, 1987). For

the BH distribution given by gBH(m) I get that BHs with mass ∼ 50M⊙ (which make

the dominant contribution to PE rates, see Figures 4.6 and 4.7 below) are confined to

a radius ∼ 0.14Rgc. Note that my scalings based on thermal equipartition might not

hold in case Spitzer instability leads to core collapse, creating a dynamically decoupled

core of high mass BHs (typically Rcore ∼ 0.01–0.10Rgc depending on the fraction of pri-

mordial binaries, Heggie et al. 2006). I account for core collapse by simply scaling my

final results on detection rates appropriately with N2
BHR

−3
corev

−1
core (see Section 4.7.3 for a

discussion).

Finally, I discuss the assumption on the relative velocity. The velocity distribution of

stars in GCs is well described by the King-Michie (KM) model (Meylan, 1987), which is

roughly a Maxwell-Boltzmann (MB) distribution with a maximum velocity cutoff. It is

well-known that the relative velocity distribution for MB individual velocity distributions

is also MB for the reduced mass µ = m1m2/(m1+m2) (Binney & Tremaine, 1987). Thus

〈v12〉RMS = (m1/µ)1/2〈vm1
〉RMS = [(m−1

1 +m−1
2 )〈m〉]1/2vvir.

Note that I do not utilize the exact velocity distribution, but associate the same

fixed velocity value for every object with identical masses. Relaxing this approximation

and accounting for MB velocity distributions leads to a change of only a few percent in

the encounter rate results (the correction is (3/π)1/2 for Model I in the range of GW

detector frequencies, see Kocsis & Gáspár 2004 for the derivation). Thus, the velocity

distribution can be safely approximated with the mean value. A simple explanation is

the fact that GW detector frequencies correspond to unbound encounters with nearly

parabolic trajectories, for which the exact value of the initial velocity is negligible (see
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Section 4.5.1 below).

The PE event rate for component masses m1 and m2 is calculated as the rate of

scattering with incident velocity equal to the initial relative velocity vrel ≡ v12(m1, m2).

4.5 Parabolic Encounter Event Rate

I now derive the event rate for the successful detection of PE signals using the two

models of GCs. This section is divided in five parts. In Section 4.5.1 I derive the

comoving event rate per comoving characteristic frequency bins for individual GCs for

the two population models. In Section 4.5.2 I derive the modifications necessary for

relativistic encounters. In Section 4.5.3 I determine the signal-to-noise ratio using the

specific detector sensitivity curves and determine the maximum observable distance of

PEs. In Section 4.5.4, I add up the contributions of all possible GCs within the visible

distance and estimate the PE detection rates. Finally in Section 4.5.5 I conclude the

results of the analysis.

4.5.1 Contributions of Individual Globular Clusters

Outline

When calculating the detectable event rates for specific GW detectors, it is desirable to

express the encounter cross section for particular f0 frequency bins. To achieve this I first

compute the interaction cross-sections for given masses and initial orbital parameters.

Then, the Newtonian equations of motion relate the initial orbital parameters to f0.

Changing to the f0 variable leads to the partial event rate for the given masses and

characteristic encounter frequencies. Then, for Model I, it is very simple to add up the

individual contributions of all objects within the cluster. For Model II, I utilize the

specific radial and relative velocity distributions, Rm and v12, and average over the CO

mass distribution.

Derivation of Event Rates

The typical minimum distance between COs in these systems is Rgc/
3
√
N ≃ 1011km, a

value several orders of magnitudes larger than the typical minimum separation of an
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encounter (10km < b0 ∼< 107km for detectable frequencies, see equation (4.14) below).

Therefore, a sufficient approximation is to consider short-time two-body interactions

during encounters7, and constant velocities in between events. The PE event rate can

then be simply estimated by a scattering of particles with incident initial velocities

v∞ = vrel on a still target lattice.

Since the velocities are assumed to be locally isotropic everywhere in the cluster,

the cross section of a particle with an impact parameter between b∞ and b∞ + db∞ is

dσ = 2πb∞db∞. I proceed to express the infinitesimal cross section for df0 bins.

I derive encounter parameters with a non-relativistic Newtonian description. The

separation, b0, and relative velocity, v0, at periastron can be computed from the initial

conditions of the interacting bodies. The initial parameters are the impact parameter

b∞ and the velocity, v∞ ≡ vrel ≡ v12(m1, m2), of the scattered particle (see Section 4.4.3

for the definition). Using the conservation of mechanical energy and angular momentum

I get

b∞ =
b0√

1 − 2γ
, and v∞ = v0

√
1 − 2γ, (4.10)

where γ = (GM)/(b0v0
2) is the ratio of potential energy and double kinetic energy at the

closest point8, with M = m1 +m2. Although equation (4.10) is strictly only valid in the

comoving reference frame of the center-of-mass, it is an adequate approximation for the

realistic parameters as long as v∞ ≪ v0. Again, I point out that the relevant encounters

are nearly parabolic, so that the initial velocity distributions have a negligible impact

on the result.

Let us express the cross section with variables b0 and v∞ using equation (4.10) and

make use of my simplifying assumption that v∞ is a constant for fixed masses (see

Section 4.4.3). The result is

dσ =

(
GM

v2
∞b0

+ 1

)
2πb0db0. (4.11)

Here, the first term dominates the parenthesis for typical v∞ and b0 values (see Eq. 4.14.

below). This term is responsible for the deflection of trajectories due to gravity.

The characteristic GW frequency is directly related to the minimum separation, b0,

7I shall discuss below that the PE event rate is not sensitive on whether the interacting participants
are elements of regular bound binaries or if they are single objects.

8γ < 1/2 for hyperbolic Newtonian trajectories.
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and the relative velocity v0 at b0 by

ω0 = 2πf0 =
v0

b0
. (4.12)

Using equation (4.10),

ω0 = (2GM)1/2b
−3/2
0

(
1 +

v2
∞b0

2GM

)1/2

. (4.13)

The correction on the RHS is v2
∞b0/(2GMCO) ∼< 10−8 (10−4) for typical frequency

bands of InLIGO (LISA). In order to get the event rate per frequency bin, I need the

inverse relationship b0(ω0, v∞). This can be obtained recursively, as a power series in ω0.

To the second non-vanishing order, I get

b0 = (2GM)1/3ω
−2/3
0

(
1 +

1

3

v2
∞

(2GM)2/3
ω
−2/3
0

)
. (4.14)

Substituting in equation (4.11) yields

dσ =
2π

3

(2GM)4/3

v2
∞

ω
−2/3
0

(
1 +

8

3

v2
∞

(2GM)2/3
ω
−2/3
0

)
dω0

ω0
. (4.15)

For Model I, the scattering rate for a single particle is nCOv∞dσ, where nCO is the

number density of COs. Since there are a total of NCO particles, the contribution of

all COs is 1/2×NCOnCOv∞dσ, where the 1/2 factor comes from the fact that the same

ensemble of particles constitute both the targets and the injection. Thus equation (4.15)

becomes

dνI = νI
1

(
f0

f100

)−2/3
(

1 +

(
f0

f I
1

)−2/3
)

df0

f0
. (4.16)

where f100 = 100Hz and

νI
1 = (2π)−2/3N

2
CO

4

(4GMCO)4/3

R3
gcv∞

f
−2/3
100 = 6.7× 10−15yr−1 (4.17)

f I
1 =

1

2π

(
8

3

)3/2
v3
vir

4GMCO

= 1.7× 10−8Hz. (4.18)

For Model II, the interacting objects with masses m1 and m2 are distributed uni-
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formly within radii R1 and R2 and have mass-dependent relative velocities v∞ = v12 (see

Figure 4.2). Let N1 and N2 denote the number of particles with mass m1 and m2, respec-

tively. Let us assume m1 > m2, for which R1 < R2. In this case the interactions between

masses m1 and m2 take place only within a radius R1, where the density of particles

with mass m2 is n2 = N2/(R
3
24π/3). For a smooth distribution, N1 is the infinitesimal

number of particles with masses between m1 and m1 + dm1, i.e. N1 = NCOgCO(m1)dm1

(and N2 defined similarly). The scattering rate for an injection of N1 particles with v∞

velocities on a target density n2 is is N1n2v∞dσ. To get the total event rate for the

cluster for ω0 bins I need to integrate over the mass distributions

dνII =

∫ ∞

0

dm1gCO(m1)

∫ ∞

0

dm2gCO(m2) ×
[
νII

1 (m1, m2)

(
f0

f100

)−2/3

+ νII
2 (m1, m2)

(
f0

f100

)−4/3
]

df0

f0
, (4.19)

where νII
1 (m1, m2) and νII

2 (m1, m2) are given by

νII
1 (m1, m2) = (2π)−2/3N

2
CO

4

(2GM)4/3

R3
>v∞

f
−2/3
100 (4.20)

νII
2 (m1, m2) = (2π)−4/32N2

CO

3

(2GM)2/3v∞
R3

>

f
−4/3
100 (4.21)

where R> = max(R1, R2) and the mass dependence is implicit in the total mass M ,

v∞ = v12, R1, and R2 (see the Appendix for explicit formulae).

The mass integrals in equation (4.19) can be evaluated independent of the frequency,

resulting in the same functional form as for Model I equation (4.16). The constants for

Model II are

νII
1 = 1.9× 10−12yr−1 (4.22)

f II
1 = 1.0× 10−10Hz. (4.23)

(see the Appendix for parametric formulae).

For Model II, it is also interesting to get the relative encounter rates for BH − BH,

BH−NS, and NS−NS interactions. Integrating equation (4.19) over the corresponding
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mass intervals, I get

νII
1,BH−BH = 0.996 νII

1 = 286 νI
1, (4.24)

νII
1,BH−NS = 4.14× 10−3νII

1 = 1.19 νI
1, (4.25)

νII
1,NS−NS = 7.04× 10−5νII

1 = 0.02 νI
1. (4.26)

The corresponding analytical formulas are given in the Appendix. It is clear that BH−
BH encounters dominate the event rates. The event rates of NS − NS encounters are

more than four orders of magnitude lower!

Discussion

Therefore I conclude that Model II has a much larger event rate than Model I. By

inspection of equations (4.19) and (4.20) the main factors responsible for this increase

can be identified. First, the CO density is increased by the CO confinement in the

core: n ∝ Rm
−3 ∝ m3/2. Second, the typical CO relative velocity inverse is increased:

v−1
∞ ∝ m1/2. Third, the gravitational focusing is proportional to m4/3. Thus, ν1 ∝(
R3

gc/R
3
CO

)
×
(
〈m10/3〉/m10/3

CO

)
. The PE event rate is thus highly inclined towards the

high-mass end of the BH distribution in the cluster. For a more precise treatment, the

exact contributions of the component mass parameters are given in the Appendix. Note,

that Dymnikova et al. (1982) obtained results equivalent to my equation (4.17) of Model

I, but they focus on star – star encounters and use m = 4M⊙ instead of mCO = 10M⊙.

(Another difference is that they do not discuss f0-dependent differential rates, but derive

the total PE rate based on a typical minimum separation. Using m = 4M⊙ in Model I,

the results are a factor of 103 lower than the rates for Model II.)

Equations (4.16-4.18) and (4.22-4.23) give the resulting PE event rate per GC of

all Newtonian trajectories between point masses for the two GC models considered. A

significant shortcoming is that COs have finite radii and collide for sufficiently small

minimum separations. Moreover the Newtonian approximation breaks down for large

velocities or strong gravitational fields. These effects are considered in Section 4.5.2

below.

Notice how small is the correction proportional to f
−4/3
0 in equation (4.16) for GW

detector frequencies f ≫ f I,II
1 . Recall that in equations (4.13,4.14) the expansion coef-

ficient is proportional to v∞. Hence the leading order term is exact for v∞ = 0, thus

it corresponds to parabolic trajectories. This proves my conjecture that the unbound
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orbit encounter rate is dominated by near-PEs.

In equation (4.16) the leading-order terms are proportional to 1/vvir. The result

is slightly counterintuitive if one identifies the star system with an ideal gas, since for

ideal gases, the rate of collisions is directly proportional to v∞. In this perspective it

seems reasonable to expect the encounter rate to be a growing function of v∞ for fixed

frequency bins. The confusion arises from the fact that my GC models are using the

opposite limit. For star systems the typical velocities are so small that the gravitational

interaction dominates the motion of the stars.9 Increasing the velocities decreases the

gravitational focusing, thereby decreasing the encounter likelihood.

The expected rate of PE events for a single GC is plotted in Figure 4.3 for logarithmic

frequency bins for the two GC models. The non-relativistic results presented in this

section are plotted with dotted lines, which overlap with the relativistic calculation below

∼ 10Hz. For higher frequency the minimum separation drops below ∼ 6 Schwarzschild

radii for the largest BHs and relativistic corrections become important. Figure 4.3

displays that event rates are higher for lower characteristic frequencies, e.g. for model II

for f0 = 0.1 mHz (the minimum frequency for space detectors), I get 1.9× 10−8yr−1GC−1

events, whereas for terrestrial detectors f0 = 100Hz it is only 1.9× 10−12yr−1GC−1.

4.5.2 Relativistic Orbits

Up to this point the PE event rates have been estimated for fixed characteristic fre-

quencies but independent of the minimum separation b0 and relative velocity v0. In

addition to non-relativistic parabolic encounters, these events also include head-on colli-

sions, relativistic captures, relativistic flybys, and zoom-whirl orbits. Since I have used a

Newtonian analysis in the derivation, my results presented in Section 4.5.1 are valid for

the non-relativistic parabolic encounters only. Here, I improve the classical calculation

to account for general relativistic encounters of test particles moving along geodesics in

the Schwarzschild space-time. This treatment is exact for extreme mass ratios, but as

an approximation I extrapolate these formulas for general mass-ratios as well.

To classify the orbits, I introduce a parameter λ ≡ b0/RSH, where b0 is the distance

9The ideal gas model is sufficient only for extremely small characteristic frequencies f0 ≪ f1 (see
equations (4.18,4.23)), which is below the lower frequency limit of GW detectors. In this regime the
stars’ trajectories are only slightly deflected, implying that gravity, in terms of encounter likelihood, is
negligible.
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Figure 4.3 The expected total rate of PEs produced in a single GC per logarithmic
frequency bin. GC Model I (solid) and Model II (dashed) results are shown including
relativistic corrections for geodesics avoiding head-on collisions (see Section 4.5.2). The
dotted lines represent PE event rates in the non-relativistic approximation. The non-
relativistic treatment is adequate for low frequencies for which the trajectories avoid
collisions with minimum separations of several Schwarzschild radii. Only a fraction of
these events can be detected, depending on the distance of the GC.
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at periastron, and RSH = 2GM/c2 is the Schwarzschild radius of the total mass10.

For Newtonian parabolic encounters, I get λ = c2/v2
0. I distinguish (i) non-relativistic

parabolic encounters for λ ≥ 6, (ii) general relativistic flybys for 2.1 < λ < 6, (iii)

zoom-whirl orbits for 2 ≤ λ ≤ 2.1, and (iv) head-on collisions for 2 < λ. I restrict my

calculations to λ ≥ 2, since this is the regime in which matched filtering can be carried

out using the waveforms of Section 4.3.

In this section, I improve Section 4.5.1 to account for the relativistic deviations in the

trajectories. In practice, I repeat the derivation of Section 4.5.1 to get the cross-section

using the orbital parameters of the geodesics of a test particle moving in a Schwarzschild

space-time (Gair et al., 2005).

For parabolic encounters the specific orbital angular momentum is

L̃ =
√

2GMb0
(
1 − λ−1

)−1/2
, (4.27)

where λ = λ(b0) defined above. The non-relativistic result is retained for λ → ∞.

Equating equation (4.27) to the angular momentum before the encounter L̃ = b∞v∞,

solving for b∞, and substituting in dσ = 2πb∞db∞ I get

dσ =
GM

v2
∞b

2
0

1 − 2λ−1

(1 − λ−1)2
2πb0db0. (4.28)

This is to be compared to the non-relativistic analogue equation (4.11). The first term is

the non-relativistic term for near-parabolic orbits and the λ-dependent fraction describes

the relativistic correction. The latter decreases the cross section per unit b0. For λ→ 2

the cross section becomes 0. For smaller impact parameters a head-on collision takes

place, for which the periastron distance and λ is undefined.

Repeating Section 4.5.1, the next step is to change to the f0 characteristic frequency

variable. Since L̃ = b20 dφ/dτ , where dτ = (1 − λ−1)1/2 dt is the infinitesimal proper

time element along the geodesic at the closest approach (e.g. Misner et al., 1973), from

equation (4.27) I get

dφ

dt
≡ ω0 ≡ 2πf0 = (2GM)1/2b

−3/2
0 . (4.29)

Quite remarkably, this is identical to the result of the non-relativistic calculation for

parabolic orbits, equation (4.13). The GW waveforms have a peak at an angular fre-

10Here I restrict to BH-BH encounters which dominate event rates, see equations. (4.24-4.26).



Detection Rate Estimates of Parabolic Encounters 95

quency ω0 for the non-relativistic encounters (Turner, 1977, and see Section 4.3 above).

For relativistic zoom-whirl orbits with several revolutions around the central BH, the

most intensive GWs are radiated at twice the orbital frequency. It is also useful to get

the inverse relationship from equation (4.29):

λ(M, f0) =

(
c3

4πG

1

Mf0

)2/3

. (4.30)

According to equation (4.29), the non-relativistic result for ω0 is adequate even in

this regime. Using equation (4.13) I get

dσ =
2π

3

(2GM)4/3

v2
∞

ω
−2/3
0

1 − (ω0/ωM,max)
2/3

[
1 − 1

2
(ω0/ωM,max)2/3

]2
dω0

ω0
, (4.31)

analogous to equation (4.15) for parabolic orbits, where

ωM,max ≡ 2πfM,max ≡
2πc3

√
32GM

(4.32)

is the maximum angular frequency, corresponding to λ = 2.

It is desirable to calculate the partial event rates of PEs with minimum separations

b0 exceeding λRSH, I substitute in equation (4.13), and impose the resulting constraint

on the characteristic frequency:

f0 ≤ fM,λ = 2π
c3

2GM
λ−3/2. (4.33)

For marginally plunging orbits, λ = 2, I get fM,λ = fM,max.

When adding up the total event rates for a particular f0 using equations (4.16) and

(4.19) only the masses satisfying the constraint equation (4.33) have to be included in

the mass integrals. Repeating Section 4.5.1 with these modification, I get for Model I

dνI = νI
1

(
f0

f100

)−2/3
1 − 2(f0/fM,max)

2/3

[1 − (f0/fM,max)2/3]
2

df0

f0

. (4.34)
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for f0 ≤ fMCO,λ, and dνI = 0 otherwise. For Model II, I get

dνII =

∫ ∫

f0≤fM,λ

dm1dm2gCO(m1)gCO(m2)ν
II
1 (m1, m2)

× 1 − 2(f0/fM,max)
2/3

[1 − (f0/fM,max)2/3]
2

(
f0

f100

)−2/3
df0

f0
, (4.35)

In equations (4.34) and (4.35), νI
1 and νII

1 (m1, m2) are the non-relativistic terms given

by equations (4.17) and (4.20).

Figure 4.3 shows the resulting total event rates for d ln f0 intervals. The solid and

dashed lines represent the total event rates of PEs for Models I and II, respectively,

including the relativistic correction for encounters that avoid collisions. As a com-

parison, dotted lines display non-relativistic results. Compared to the non-relativistic

results, event rates decrease for two reasons: first the gravitational focusing decreases

the cross sections of relativistic orbits, for 2100Hz = f0,max[2mNS, (λ = 2)] ∼> f0 ∼>
f0,max[2mmax, (λ = 6)] = 10Hz, and second, the plunging orbits with λ < 2 are ex-

cluded from my estimate. The latter effect kicks in at f0,max(2mmax, 2) > 47Hz where

the highest mass BHs suffer head-on collisions. At f0,max(2mmin, 2) = 570Hz even the

smallest BHs are captured, and only the NS–NS PE event rate contributions remain.

The NS–NS partial event rates can be visualized for lower frequencies by extrapolating

the total event rates shown in Figure 4.3 between 570Hz < f0 < 2100Hz. The NS–NS

event rates are clearly negligible compared to the total rates including BHs. Note, that

my calculations use point masses valid for BHs only. For f0 ∼> 1500Hz the minimum

separation of 1.35M⊙ NSs decreases under ∼ 20km, for which my approximation breaks

down.

Figure 4.3 is useful to visualize the total PE event rate per GC. However, only a

fraction of these events can be detected, and this fraction depends on both the differ-

ential encounter event rates ∂3ν/∂m1∂m2∂ ln f0 and also the observable distance of the

encounter. For the detection rates I shall make use of the infinitesimal encounter event

rate for infinitesimal mass and f0 bins. From equation (4.35) I get11

∂3ν

∂m1∂m2∂ ln f0
= νII

1 (m1, m2)
1 − 2(f0/fM,max)

2/3

[1 − (f0/fM,max)2/3]
2

(
f0

f100

)−2/3

. (4.36)

11I follow to notation of Miller (2002) and Will (2004) for the definition of partial event rates by not
including the mass distribution gCO(m). The mass distributions enter only when integrating for the
total event rates equation (4.42).
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The total event rate for one GC depends only on ∂3ν/∂m1∂m2∂ ln f0, thus in equa-

tion (4.35) equation (4.36) was directly integrated over f0, and the m1, and m2 distribu-

tions. However for the detection rate, the observation distance of the encounter depends

on f0, m1, and m2 differently. Therefore the differential detection rate has a modified

parameter dependence, implying that the integration can be carried out only after the

observation distance had been included in the differential rate.

4.5.3 Maximum Distance of Detection

I now derive the maximum detectable distance of an encounter for fixed masses m1, m2,

and characteristic frequency f0, for a given signal-to-noise ratio S/N . The luminosity

distance can be expressed with the redshifted parameters, miz = (1+z)mi for i = {1, 2}
and f0z = f0/(1 + z), using the angular averaged signal-to-noise ratio, equation (4.2),

and signal waveform, equation (4.5):

dL(m1z , m2z, f0z) =

√
85π2/3

25/3

G5/3

c4

Mz
5/3

S/N

√
Erel(λ)

Enr(λ)
W (f, f0z), (4.37)

where Erel(λ)/Enr(λ) is the enhancement of the GW energy for general relativistic orbits

(Gair et al., 2005, and see Section 4.3 above), where λ = λ(M, f0) = λ(Mz, f0z) is given

by equation (4.30), and W (f, f0z) is a factor depending on only the frequencies

W (f, f0z) =

√
4

5

∫ fmax

fmin

f
4/3
0z

f 2

F (f/f0z)

Sn(f)
df (4.38)

F (x) is the dimensionless, normed GW energy spectrum defined in Section 4.3, fmin

and fmax are the minimum and maximum frequencies specific for GW detectors (see

Section 4.2). Henceforth I shall fix S/N = 5, but other values can be roughly obtained

by scaling the final result on detection rates with (S/N)−3 (assuming that the number

of sources increases with dL
3
max).

Note that equation (4.37) formally depends on redshifted parameters. However, since

both the differential encounter event rate, equation (4.36), and the GC model mass

distribution depend on the comoving parameters, it is useful to revert to the comoving

parameters in equation (4.37) and get dL(m1, m2, f0). This can be achieved by writing

miz = (1 + z)mi for i = {1, 2} and f0z = f0/(1 + z) in equation (4.37) and making this

equal to the standard formula dLcos(z) connecting the luminosity distance and redshift
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in a specific cosmology Eisenstein (e.g 1997, the index “cos” refers to the cosmological

luminosity distance–redshift formula in order to distinguish this from the maximum

distance, equation (4.37), specific for PE encounters). Now both sides depend on z.

Numerically solving for z gives z(m1, m2, f0). Finally substituting the result back in

dLcos(z) gives dL(m1, m2, f0).

This procedure is however cumbersome in practice. It becomes numerically very time-

consuming when computing the total detection rates, which includes the evaluation of

integrals over the parameters. Therefore I make the following essential approximations

when solving for the luminosity distance in equation (4.37):

dL(m1, m2, f0) ≡





using z = 0 if z1 ≤ 0.01

using z = H0dL/c if z1 ≤ 0.1

no approximations if 0.1 < z1 < 6

using z = 6 if S/N > 5 for z = 6

(4.39)

On the RHS of equation (4.39), z1 is the first approximation of the redshift, which is

obtained by calculating dL from the RHS of equation (4.37) with no redshift, and making

this equal to dLcos(z1), and solving for z1. I neglect cosmology for z1 < 0.01 and take

a Hubble constant H0 = 70km/s/Mpc for 0.01 < z1 < 0.1. Next, whenever z1 > 0.1,

I substitute z = 6 for the RHS of equation (4.37) and in case this is already larger

than dLcos(6), then I conclude that the source is observable at z = 6 for S/N > 5 and

take dL = dLcos(6) as the maximum distance of observation. I do not explore detection

rates at larger redshifts, since then the BH mass and radial distribution might not have

relaxed to the final state. If S/N < 5 for z = 6 then I execute the exact procedure

without approximations for z1 > 0.1

Changing to the non-redshifted variables in equation (4.37) is even ambiguous in

some cases. For NGLISA the signal-to-noise ratio is occasionally not a decreasing but

an increasing function of the redshift. This happens when the signal is redshifted to the

more sensitive range of frequencies of the detector, and the enhancement in sensitivity

is more substantial than the attenuation from increasing the distance. In these cases a

certain encounter can be observed within a certain distance, then increasing the distance,

the encounter first becomes invisible (i.e. S/N < 5), then again visible (i.e. S/N ≥ 5)

within a second maximum distance. This phenomenon occurs for NGLISA for large BH

masses and near-maximum characteristic frequencies.
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Figure 4.4 Maximum luminosity distance, dLmax, of two BHs with m1 = m2 = 40M⊙
masses undergoing a PE, and emitting GWs that are detected on average with S/N = 5.
The x-axis shows the emitted f0 characteristic frequency of the flyby comoving with the
host GC. The curves correspond to InLIGO, VIRGO, AdLIGO, LISA, and NGLISA,
respectively. Thin dotted lines show the result for Newtonian waveforms (Turner, 1977),
thick lines account for general relativistic corrections to the GW amplitudes for close
encounters. For frequencies larger than fM,max = 71Hz the minimum distance is under
λ = 2 Schwarzschild radii, for which a head-on collision takes place. I did not impose any
restrictions on λ for the non-relativistic curves. All curves account for the redshifting
z, which is shown on the right border. I restrict to z ≤ 6. For different masses, dL

scales with roughly M5/3 and the cutoff frequency scales with M−1. Since signals are
broadband, the detectors have a chance to observe a broad range of f0.
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Figure 4.4 shows the maximum distance of sources with S/N = 5 for m1 = m2 =

40M⊙ BH masses. The thick curves account for the relativistic corrections with mini-

mum separations larger than λ = 2, the thin dotted lines represent the non-relativistic

results with no bound on λ. The maximum frequency equation (4.32) corresponding

to marginally colliding orbits (λ = 2) is 71Hz and scales with M−1 for other masses.

For other masses dLmax scales with M3/5. All curves account for the cosmological red-

shifting. The plot shows, that the non-relativistic approximation is adequate for small

frequencies, but it implies a luminosity distance a factor of 2 – 3 lower than the relativis-

tic calculation near the maximum f0 frequency. Therefore, the dotted lines are useful to

approximately visualize dLmax for lower M , when the cutoff frequency shifts to higher

values.

The enclosed volume and the observable sources are given by equation (4.8). If

neglecting relativistic and cosmological effects, I get V ∝ D3 ∝ M5.

4.5.4 Detection Rates

In the previous sections I calculated the differential event rates of PEs for single GCs

per infinitesimal mass and frequency bins, and computed the maximum distance of their

detection. Here I combine these results to calculate the total detection rate of PEs.

For fixed m1, m2, and f0, the rate of GW detections of the corresponding encounters

is the observed rate for a single GC times the number of observable GCs. Since there is

a cosmological redshift between the source GC and the observation, the single-GC rate

is reduced by 1 + z:

∂2νtotal

∂m1∂m2∂ ln f0

=
1

1 + z

∂2νsingle

∂m1∂m2∂ ln f0

Ngc(m1, m2, f0). (4.40)

The first term is the redshifted event rate expressed with the comoving event rate equa-

tion (4.36) and the second is simply

Ngc(m1, m2, f0) = Ngc[dLmax(f0, m1, m2)], (4.41)

where Ngc(dL) is the number of GCs within a given maximum luminosity distance. In

practice dLmax is given by equation (4.39) which I substitute in equation (4.8).

The total detection rate is then simply the integral of the differential detection rate,
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equation (4.40), using the CO mass distribution. After substituting, I get

νtot(f0) =

∫ f0 max

0

df0

f0

∫ ∫

f0≤fM,max

dm1dm2gCO(m1) gCO(m2)
∂2νtotal

∂m1∂m2∂ ln f0

(4.42)

where gCO(m) is the CO mass distribution for Model II, defined in Section 4.4.3. The

mass integrals are evaluated over the (m1, m2) domain for which the encounter avoids a

collision (i.e. f0 ≤ fM,max, see equation (4.32)) and the f0 integral extends to a maximum

possible frequency independent of masses (∼ f2mNS,max). The result of equation (4.42)

is one number, the expected rate of detection for the specific detector.

4.5.5 Results

The estimated total number of successful detections from equation (4.42) is νtot =

5.5× 10−5yr−1 for InLIGO, 7.2× 10−5yr−1 for VIRGO, 6.3× 10−2yr−1 for AdLIGO,

2.9× 10−6yr−1 for LISA and 1.0yr−1 for NGLISA.

It is interesting to see the differential event rate per logarithmic f0 bin independent

of masses, which is obtained by carrying out only the mass integrals in equation (4.42).

The result is shown in Figure 4.5. The figure shows that both AdLIGO and NGLISA

could have some chance to detect PE events, if observing for one year; AdLIGO mainly

sensitive to f0 frequencies between 30 and 80Hz, and NGLISA sensitive between 0.2Hz

and 10Hz. There is a sharp cutoff in the PE detection rate for high frequencies. In

this regime, the encounters among the relatively higher mass BHs are not parabolic, but

result in direct captures, and only the lower mass BHs contribute to the PE detection

rate. show the differential event rate for logarithmic total mass bins, d lnM , and for

logarithmic mass ratio bins, d ln q. Here I define the mass ratio as q = m</m> for which

q ≤ 1. (Recall the definitions m< = min(m1, m2) and m> = max(m1, m2).) The M

dependent partial PE detection rate can be obtained from equation (4.42) by changing

the m1, m2 integrals to M and m2 variables, rearranging the order of integrals, and

evaluating the f0 and m2 integrals only. The partial PE rates for fixed q can be obtained

similarly, by changing to m> and q variables, and evaluating the f0 and m> integrals

only. In Section 4.5.1 I demonstrated that the event rates of GCs are sensitive to 〈m10/3〉,
and are inclined towards the high-mass end of the CO distribution, in particular PEs

of NSs have a relatively negligible event rate. The detectable volume entails an even

stronger mass dependence m5. Therefore, for a mass distribution of m−1, I expect a

scaling with ∼m22/3 for logarithmic total mass bins, implying that the highest mass
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Figure 4.5 The expected PE detection rate per logarithmic emitted characteristic fre-
quency bin. Results are shown for the specific detectors. All curves account for general
relativistic encounters and cosmology. The units on the y-axis is simply yr−1, since it is
a rate per d ln f0 = df0/f0 bins for which the units of f0 drops out. For large f0, there is
an abrupt cutoff in the detection rate as the larger mass BHs suffer head-on collisions,
leaving only the contribution of low-mass BHs in the PE rate.
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BHs will dominate the PE event rates. However, increasing the BH masses decreases

the maximum f0 frequency of an encounter avoiding a collision. Figure 4.6 verifies that

all of the detectors are indeed much more sensitive to large total masses, even though

my model GC (i.e. Model II) contains a small relative number of these objects. Note,

that the BH mass distribution gBH(m) is constant for d lnm bins. With Figure 4.6

the partial detection rates of BH–BH and NS–NS encounters can be visualized. For

M > 2mmin = 10M⊙ the BH–BH encounters dominate, while M ≈ 2mNS correspond

exclusively to NS–NS encounters. PE detections of NS–NS encounters are practically

impossible, they are suppressed by at least 9 orders of magnitudes. Similarly, Figure 4.7

shows that BH–NS encounters are also suppressed by 6 orders of magnitudes!
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Figure 4.6 The expected PE detection rate per logarithmic total mass bins, d lnM , for
the various detectors. Note that the mass function of my GC model is constant for d lnm
intervals for BHs 120M⊙ > 2m > 10M⊙, and is Gaussian type for NSs 2m∼ 2.7M⊙. BH–
NS encounters dominate for 6.35M⊙ < M < 10M⊙. The dominant PE contribution is
expected from m1,2 = 40 − 60M⊙ component masses.

Figure 4.8 shows the detection rate as a function of minimum distance, λmin of

the encounters. Recall that for a given total mass M , λ determines the characteristic

frequency f0 by equation (4.33), and marginally plunging orbits correspond to λmin = 2.

Figure 4.8 was obtained by changing the domain of integration of f0 to f0 ∼< fM,λ
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Figure 4.7 The expected PE detection rate as a function of the mass ratio q = m2/m1 of
the interacting masses, wherem1 ≥ m2 is assumed. The partial PE detections are plotted
per logarithmic mass ratio bins, d ln q, for the various detectors. Note that the assumed
smallest and largest CO masses of my GC model implies a cutoff below 1.35M⊙/60M⊙.
The detection rate is dominated by equal mass encounters. PEs with q > 5M⊙/60M⊙ are
dominated by BH–BH encounters, while 1.35M⊙/60M⊙ ∼< q < 5M⊙/60M⊙ correspond
to BH–NS events.
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in equation (4.42). The curves show that terrestrial detectors are more sensitive to

close approaches than space detectors. The λmin = 2 case corresponds to all of the

PE detections. It is interesting to note, that terrestrial detectors display a different λ

dependence: AdLIGO rates show a weaker increase for marginally colliding orbits λ∼ 2.

This is a consequence of cosmology: the observation distance is so large (Figure 4.4)

that the cosmological comoving volume element is significantly smaller, and the GW

frequency is redshifted outside the sensitive domain of the detector for these events.
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Figure 4.8 The total cumulative expected detection rate of PEs subject to the constraint
that the minimum separation exceeds λ times the total Schwarzschild radius. For λ < 2
a head-on collision occurs, which I are not considering here (see Section 4.7.1 for a
discussion).

4.6 Conclusions

PEs of solar BHs are possible sources of gravitational radiation. My results suggest that

current and near future GW detectors are potentially capable of detecting these signals

in the local universe and up to cosmological distances for the higher masses. I antici-

pate S/N ∼> 5 matched-filtering detection rates for quasi-parabolic trajectories avoiding
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collisions, νtot = 5.5× 10−5yr−1 for InLIGO, 7.2× 10−5yr−1 for VIRGO, 0.063yr−1 for

AdLIGO, 2.9× 10−6yr−1 for LISA, and 1.0yr−1 for NGLISA. For different signal-to-noise

ratios, detection rates scale by approximately (S/N)−3. These results correspond to a

BH mass function gBH(m) ∝ m−1 with minimum and maximum masses of 5 and 60M⊙.

For comparison I ran calculations for more general distributions gBH(m) ∝ m−p, and

different mmin and mmax values. Table 4.1 lists the results for these models. Here, I

have fixed NBH = 500 for models with mmin = 5M⊙. For larger mmin, I reduce NBH by

assuming that BHs with masses 5M⊙ ≤ m < mmin have escaped the cluster. Results are

very different for various choices of parameters (see Section 4.7.3 for a detailed discussion

below).

I constructed two different GC models. I conclude that a uniform mass and density

distribution (Model I) is inadequate since the contribution of the GC core consisting

of the more massive BHs are significantly underestimated. After accounting for mass

distribution and mass segregation, as well as the relative velocity distribution of the

sources (Model II) I obtained event rates two orders of magnitudes higher than Model I

per GC. Moreover, more massive BHs in GCs are visible to significantly larger distances,

and supply the most prominent sources of PEs for detection (Figure 4.6).

In Section 4.7, I include a critical review of my assumptions and their influence on the

results. To point out just one thing, note that compared to my previous estimates above,

the PE detection rates might have been underestimated by four orders of magnitudes for

core-collapsed GCs (depending on the final core radius and population, see Section 4.7.3

below)!

4.7 Discussion

4.7.1 Comparison with Other Orbits

How do PE event rates compare to the event rates of binary inspirals, mergers, and

head-on collisions? What are the main factors for the difference? I briefly discuss these

questions in this section.

Basic Features of Parabolic Encounters

Let us quickly summarize the main properties of PE sources.
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Table 4.1. Detection rates for alternative models

p mmax mmin νInLIGO νVIRGO νAdLIGO νLISA νNGLISA

[M⊙] [M⊙] [yr−1] [yr−1] [yr−1] [yr−1] [yr−1]

0 20 5 1.0 (−6) 5.2 (−7) 2.2 (−3) 8.7 (−8) 6.3 (−4)

0 60 5 2.2 (−4) 3.1 (−4) 2.4 (−1) 1.2 (−5) 5.2

0 60 40 1.3 (−4) 2.1 (−4) 1.3 (−1) 7.2 (−6) 4.3

0 100 5 1.0 (−3) 3.6 (−3) 1.3 1.3 (−4)

0 100 40 9.5 (−4) 3.4 (−3) 1.2 1.2 (−4)

0 100 80 2.4 (−4) 1.2 (−3) 3.4 (−1) 4.3 (−5)

1 20 5 4.8 (−7) 2.4 (−7) 1.0 (−3) 4.5 (−8) 2.7 (−4)

1 60 5 5.5 (−5) 7.2 (−5) 6.3 (−2) 2.9 (−6) 1.0

1 60 40 2.5 (−5) 3.9 (−5) 2.6 (−2) 1.3 (−6) 7.6 (−1)

1 100 5 2.2 (−4) 6.4 (−4) 2.8 (−1) 2.4 (−5)

1 100 40 1.8 (−4) 5.7 (−4) 2.2 (−1) 2.0 (−5)

1 100 80 2.9 (−5) 1.4 (−4) 4.2 (−2) 5.2 (−6)

2 20 5 1.8 (−7) 9.1 (−8) 4.1 (−4) 2.1 (−8) 9.5 (−5)

2 60 5 6.6 (−6) 7.2 (−6) 8.3 (−3) 3.7 (−7) 8.4 (−2)

2 60 40 1.8 (−6) 2.8 (−6) 1.9 (−3) 1.0 (−7) 5.0 (−2)

2 100 5 1.7 (−5) 3.6 (−5) 2.1 (−2) 1.5 (−6)

2 100 40 9.7 (−6) 2.7 (−5) 1.1 (−2) 9.6 (−7)

2 100 80 8.9 (−7) 4.3 (−6) 1.3 (−3) 1.6 (−7)

Note. — The number of BHs per GC is normalized to NBH = 500
for mmin = 5M⊙ for all choices of mmax. For larger mmin, all BHs with
5M⊙ ≤ m < mmin are assumed to have escaped from the cluster. De-
tection rates are given in normal form, where the exponent is shown in
parenthesis. Some fields left blank correspond to cases where the S/N is
not a monotonically decreasing function of distance (see Section 4.5.3).
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• The event rates for d ln f0 intervals scale with f
−2/3
0 for trajectories avoiding colli-

sions. Collisions decrease PE event rates quickly for large frequencies, f ∼> 50Hz,

rates drop four orders of magnitudes between 50 and 500Hz.

• The f0-scaling of the amplitude of the signal is f
−1/3
0 for GW frequencies f ∼ f0.

The integrated RSS signal amplitude scales with f
1/6
0 .

• The signal energy-spectrum is broadband, has a maximum at f ∼ f0, and a rel-

atively shallow cutoff for larger frequencies. The half-maximum of the signal is

∆f ∼ 1.5f0, and the spectral energy density drops to 1% at f ∼ 5f0 (Turner, 1977).

• In terms of detections for d ln f0 intervals, the maximum distance of PE detections

for a band-pass detector is roughly independent of frequencies between fmin ∼< f0 ≤
f0max, where fmin is the minimum detectable frequency of the detector and f0 max

is the maximum characteristic frequency of a PE avoiding collisions.

• The detection rates of equal-mass PEs scale with 〈m22/3〉 for d lnm intervals, the

higher mass BHs dominate PE detections.

• Space detectors will possibly detect more PE events in the local universe, but

terrestrial detectors see further.

• Typical event rates at f0 = 50Hz are 1.6× 10−12yr−1GC−1 which corresponds to

R = 1.4× 10−11h3yr−1Mpc−3(∆ ln f0)
−1.

• Typical maximum distance of detection for PEs with appropriate f0 is ∼ 300Mpc

for InLIGO and VIRGO, z∼ 1 for AdLIGO, ∼ 0.4Mpc for LISA, and z∼ 0.2 for

NGLISA.

• Typical overall rate of PE detections per year is ∼ 10−4 for InLIGO and VIRGO,

∼ 0.1 for AdLIGO, ∼ 10−6 for LISA, and ∼ 1 for NGLISA.

Parabolic Encounters vs. Inspirals

The event rates of PEs depend on the characteristic frequency. Without any specifica-

tions PEs are more regular than e.g. BH–BH inspirals. However, within the sensitive

range of GW terrestrial detectors PEs are rather rare by a factor of ∼ 10−4. Event

rates are higher for space detector frequencies, however space detectors have a smaller

distance of maximum observation.
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Kocsis et al. (2006) suggests that the detectable distance of PEs is comparable to

inspirals. However, this is somewhat deceptive since PE results correspond to larger BH

masses, 50M⊙ rather than 10M⊙ which is regular for BH–BH inspirals in the literature.

For 10M⊙ component masses, the maximum distance of observation is less for PEs than

for inspirals (Figure 4.4), the PE event rates are suppressed by a factor of ∼ 103 (Fig-

ure 4.6). However for larger masses the comparison changes with the following factors.

First, although the GW signal amplitude is proportional to M5/3 for inspirals, increasing

the masses reduces the signal frequency (which in turn reduces the detector sensitivity)

and also reduces the observation time (which also decreases the effective signal ampli-

tude). Another important difference is in the binary separation λ which determines the

signal frequency. It is restricted to λ > 3 for inspirals, the innermost stable circular

orbit, a more stringent constraint than the condition λ > 2 for PEs (see Section 4.5.2).

Finally opposed to the PE signal waveforms, the inspiral signals are narrow band, imply-

ing that the high mass, i.e. low frequency, inspiral waveforms are much harder to detect

as much smaller signal power accumulates at the more sensitive range of frequencies.

When combining all of these effects I expect that low mass BH inspirals are detectable

further with terrestrial detectors, while for large masses where the observation is lim-

ited to at most a few orbits, marginally collisional PEs are better detected. Therefore,

detectors can observe the higher mass encounters for PEs. This is exactly analogous to

the comparison of the inspiral and plunge phases of binary coalescence, for which the

detection of plunge dominates for large masses (Flanagan & Hughes, 1998).

Among the GW detection candidate sources in GCs, PEs are very infrequent com-

pared to stellar BH–BH inspiral rate estimates of Portegies Zwart & McMillan (2000)

or Miller (2002) within GCs, but are comparable to the recent results of O’Leary et al.

(2006). Observations of radio pulsars and gamma ray bursts suggest several orders of

magnitude larger numbers for NS–NS or BH–NS inspiral detections (Kalogera et al.,

2004; Nakar et al., 2006).

Parabolic Encounters vs. Head-on Collisions

As a second example, let us consider the event rates of head-on collisions for unbound

encounters. Head-on collisions are related to PEs, by extending the parameter λ to values

less than 2, the unstable circular orbit. Thus it would be relatively straightforward to

extend the analysis to these events, by examining the event rates for small initial impact

parameters, and computing the detectability as a function of this parameter. However,
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the exact shapes of gravity waveforms are presently not available for collisions (see

Baker et al. 2006 for current progress), therefore maximum likelihood detections are not

possible, and the detection of these bursts requires much higher signal-to-noise levels.

I shall argue that direct head-on collision detections are potentially less frequent than

PEs.

The rate of head-on collisions between BHs is well known, (see e.g. Hills & Day, 1976;

Cutler et al., 1994; Sigurdsson & Rees, 1997) however the detection rates of the resul-

tant GW signals is subject to the uncertainty of the GW signals (Flanagan & Hughes,

1998). Direct collisions produce potentially less intensive GW signals than close PEs

even if neglecting the relativistic amplitude enhancement for PEs. To see this, let us

compare GW signal strengths that I adopt for PEs (see Section 4.3, and Gair et al.,

2005; Martel, 2004; Turner, 1977), with general relativistic calculations for head-on col-

lisions. To my best knowledge, off-axis collisions of BHs have not been calculated as a

function of impact parameter. For radial head-on collision of Schwarzschild BHs ∆E ≃
0.01 (µ2/M) c2 (Anninos et al., 1993; Davis et al., 1971; Moreschi, 1999; Sperhake et al.,

2005). Sasaki & Nakamura (1982) derived GW energies for the radial infall of a test

particle into a Kerr BH, and Mino et al. (1996) accounted for the spin of the infalling

particle in addition. Results are in the range of ∆E = 0.03 – 0.01 (µ2/M) c2 according

to the magnitude and alignment of spins and the relative direction of the approach. For

high-velocity head-on collisions, there are significantly larger results: ∆E = 0.328µc2

for non-rotating BHs (D’eath & Payne, 1992), and up to ∆E = 0.70µc2 for extreme

Kerr-BHs (Cardoso & Lemos, 2003). However, in GCs the initial velocities are typically

non-relativistic, therefore I do not expect a significant relative contribution of relativis-

tic head-on collisions. Once the BHs are so near that a common surrounding horizon

envelope forms the space-time relaxes to a Kerr-BH. The energy output of this process

is between ∆E = 6× 10−6M c2 (Price & Pullin, 1994) for axisymmetric encounters and

∼< 0.01M c2 for quasi-circular initial conditions (Khanna et al., 1999). In comparison,

the energy output in GWs for non-relativistic PEs is ∆EPE = 0.01 (λ/4.1)−7/2 (µ2/M) c2

(Turner, 1977). Using the low-velocity case, the GW amplitudes of BH collisions are

overestimated by the Newtonian results by a factor between (λ/3)−7/2 and (λ/4)−7/2,

depending on spins. Therefore, the extapolation of the Newtonian treatment to the

regime where the minimum separation is λ≪ 3 leads to significant overestimates of the

true head-on collision GW energies. In conclusion, the extrapolation of event rates as a

function of λ (for λ < 2 in Figure 4.8) or as a function of the logarithmic characteristic

frequency (for f0 > fλ=2 in Figure 4.4, dotted lines) is possibly overly optimistic and

therefore inadequate for the estimation of the detection rates of head-on collisions with
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the particular GW detectors.

4.7.2 Approximations in the Analysis

My event rate estimates rely on several approximations. The most important caveat

in my analysis is possibly neglecting GW recoil capture in bound eccentric orbits. The

GW radiation reaction is substantial for strong gravitational fields, for low λ. For ini-

tially nearly parabolic orbits, the periastron distance and the eccentricity is decreased12

(Cutler et al., 1994). The first consequence is a minor decrease in the PE event rate,

because of the increase of the cross-section of direct capture. On the other hand, GW

recoil produces bound orbits from initially unbound trajectories (Lee, 1993). The perias-

tron distance is then further decreased during each subsequent close approach inducing

successively stronger GW radiation. Therefore PE events are potential precursors of

multiple subsequent more intense highly eccentric bound encounters, analogous to the

captures of stellar compact objects by supermassive black holes (Hopman & Alexander,

2005). The GW detection rate of the resultant orbits is likely to be significantly higher

than PE detections. As a result, I anticipate several successful detections for AdLIGO

per year for a wide range of BH mass-distribution models (see Tab. 4.1 for PEs without

GW recoil capture). I leave a detailed quantitative study for future work.

There is a second independent reason suggesting that higher detection rates will

be more likely. Throughout this work, I estimated matched filtering detection signal-

to-noise amplitudes with the angular averaged formula which is valid for an analysis

using only a single GW detector. However, a coincident analysis incorporating sev-

eral detectors allows much more optimistic detection limits (see Jaranowski et al., 1996,

and Section 4.3 above). If lowering the angular averaged minimum detection limit

to S/N = 3/
√

5 (equivalent to an optimal-orientation single-detector observation at

S/N = 3) yields νtot = 1.7× 10−3yr−1 for InLIGO, 2.7× 10−3yr−1 for VIRGO, 0.46yr−1

for AdLIGO, and 9.5× 10−6yr−1 for LISA for my standard GC Model II with NBH = 500,

p = 1, mmin = 5M⊙, and mmax = 60M⊙. For models with larger mmax detection rates are

even higher (see Tab. 4.1), implying several successful detections per year for advanced

terrestrial detectors.

I have also neglected the bound binary interactions in the scattering dynamics and

restricted only to single-single encounters. Depending on the angle of injection this could

12unless λ ∼> 2.05, in which case the eccentricity is increased by GW recoil
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increase or decrease event rates. However my analysis of single–single interaction shows

(Section 4.5.1), that the typical numerical values for PE cross-sections are extremely

small, so that the injection has to have an initial velocity very accurately pointed towards

the target CO in order to produce a detectable signal. For typical encounters with

m1 = m2 = 50M⊙ and f0 = 50Hz, the minimum separation is b0 ∼ 10−6 AU, and the

impact parameter is b∞ ∼ 10−2 AU. As a result, for single–binary interactions I speculate

that the separation of scales is possible to distinguish three independent phases of the

interaction: (i) the faraway zone r ≫ abin, (ii) the intermediate zone r∼ abin, and (iii) the

PE zone r∼ b0 ≪ abin. In (iii) the binary companion can be discarded. Moreover, note

that the velocity during (ii) is still negligible compared to (iii). Therefore in practice, the

beginning of phase (iii) is exactly analogous to the initial conditions of a single–single

encounter. The only difference is the distribution of velocities is not isotropic, but after

phase (i) it is beamed toward the center of mass, and phase (ii) adds a random deflection

due to the companion. Plugging in the numbers for binary separations of abin ≫ 10−2 AU

I conclude, binary focusing is not likely to significantly modify my PE rate estimates.

Numerical simulations would be needed to determine the exact modifications in the

estimates.

Binary interactions also alter the total number and mass distribution of BHs in the

cluster. However in my calculations the total number and mass function of BHs are input

parameters, which can be chosen consistently with the most sophisticated simulations.

Throughout this analysis I assumed simplified GC models. While my most sophisti-

cated model accounts for the mass distribution, mass segregation, and relative velocities

(see Section 4.4.3) it does not consider the nonuniform radial distribution of density of

regular stars in the cluster core, nor does it consider variations around the characteristic

GC model parameters (e.g. virial radius, total mass, etc). However, the final results

are simple powers of the characteristic parameters (ν ∝ q2N1.5
totR

−2.5). My treatment

allows upper and lower bounds to be made on the exact GC model detection rates.

These bounds are still much tighter than other sources of uncertainties, which justifies

the simplifying model assumptions in this analysis.

Another major approximation was to adopt the angular averaged signal waveforms

in the Newtonian approximation (Turner, 1977), and corrected for the relativistic en-

hancement of the amplitude, substantial for close-encounters. I adopted the relativistic

correction for the quadrupole radiation of a test particle geodesics (Gair et al., 2005;

Martel, 2004) and extrapolated results for other masses. These estimates do not account

for GW recoil. However, Figure 4.8 shows that the contribution of extreme zoom-whirl
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orbits λ ≈ 2 does not ruin my estimates, since the detection rate does not increase sub-

stantially for marginally plunging orbits. GW recoil reduces PE signal-power by driving

the interacting masses to collisions, thereby terminating extreme zoom-whirl orbits much

sooner than the no-recoil encounter time (Gair et al., 2006). I conclude that neglecting

GW recoil did not lead to a large overestimate, implying that my results are acceptable

approximations in this respect.

An exact treatment would have to utilize the more exact post-newtonian waveforms

of the general problem using arbitrary masses and spins, and should take into account the

forward peaking of GWs for high velocities, Doppler shift of GW frequencies, spin-orbit,

and spin-spin interactions, etc. Although it is clear that a real data analysis matched

filtering would have to be carried out with exact signal templates, the leading-order (i.e.

Newtonian) term dominates the angular averaged signal power, which is therefore an

adequate first estimate for the detection rates.

4.7.3 Uncertainties in the Result

Model Parameters

There are several theoretical uncertainties in my estimate. Among the most impor-

tant uncertainties are the values of the GC model parameters, like the number of BHs

in the cluster NBH. Portegies Zwart & McMillan (2000) derives qBH = NBH/Ntot =

6× 10−4 by using Scalo (1986) initial mass function (IMF) and assumed that every

object more massive than 20M⊙ up to 100M⊙ had evolved to a BH. When using a

Salpeter IMF, the result is qBH = 10−3 (Miller, 2002), and Kroupa & Weidner (2003)

IMF gives qBH = 1.5× 10−3 (O’Leary et al., 2006). I adopt the most conservative re-

sult of Portegies Zwart & McMillan (2000). However there is a chance that a non-

negligible fraction of the stars have been ejected from the cluster or have undergone

subsequent mergers. Both processes increase the estimate on the final BH fraction

(Miller, 2002). On the other hand dynamical binary interactions, binary recoil kicks,

or GW recoil of BH mergers can eject BHs, thereby reducing their overall numbers and

possibly also modify the mass-distribution. In fact, a significant portion of the stellar-

mass BH population might be ejected, especially in small clusters (O’Leary et al., 2006;

Portegies Zwart & McMillan, 2000; Sigurdsson & Hernquist, 1993). Belczynski et al.

(2006) find that for an initial binary fraction of 50%, the retained fraction of BHs

varies between 0.4 and 0.7. In my fiducial calculations I adopted qBH = 5× 10−4 and
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N tot = 106. To see the effects of BH ejection, Tab. 4.1 shows results for other models.

For the general case, I provide analytical scalings which can be readily used in case

these parameters are better determined in the future. For example since νtot ∝ N2
BH, for

NBH = 5000 (50) detection rates increase (decrease) by a factor of 100.

Black Hole Mass Distribution

An even more significant source of uncertainty is the mass distribution of BHs in the

clusters. I have calculated detection rates for several distributions (Tab. 4.1). Increasing

the p exponent of the distribution, gBH ∝ m−p, decreases the detection rate by a factor

of ∼ 5 for a unit change in p. Changing the maximum mass of the distribution varies

the results even more significantly. Compared to the detection rate corresponding to

mmax = 60M⊙, for mmax = 100M⊙ (20M⊙) I get a ∼ 1 – 3 order of magnitude increase

(decrease) depending on the detectors. I have also tried changing the minimum mass

mmin, by assuming that the BHs with masses m < mmin have escaped from the cluster.

Compared to mmin = 5M⊙, a value of mmin = 40M⊙ reduces detection rates by a factor

of ∼ 2. In the appendix, I provide ready-to-use formulas for calculating detection rates

for other parameter values.

From the theoretical point of view, simulations of the initial stellar BH mass function

(Fryer & Kalogera, 2001) result in a maximum mass limit of ∼ 20M⊙, but the particular

form of the mass function is very different for various assumptions (fraction of explosion

energy used to unbind the star, stellar winds, mass transfer after helium ignition, etc).

Recent simulations of rapid star evolution assuming a lower metallicity for the progenitor

stars (weaker stellar winds) appropriate for GCs and including a large fraction of binaries,

collisions, and accretion leading to the mass buildup of BHs imply a stellar-mass BH

distribution with maximum BH masses around Mmax = 60 – 100M⊙ (Belczynski et al.,

2006). Simulations of the subsequent long-term dynamical evolution has been shown

to be sensitive to BH binary and triple interactions (O’Leary et al., 2006). Binary-

single body interactions, BH-star collisions, and GW recoil kick can possibly significantly

reduce the low mass BH population but enhance the mass of the most massive BHs in

the cluster. From the observational point of view, there is yet lacking evidence for stellar

mass BHs with m > 20M⊙, but this might be accounted for the low number statistics

(a total of 20 X-ray stellar-mass BH candidates have been identified to date, Casares,

2006).
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Core Collapse

Finally, a considerable uncertainty in the PE detection rates results from the actual

scaling of the mass segregation relationships. Even in my complicated model I have

assumed a simple mass segregation, based on thermal equipartition among the specific

CO components. This assumption is in fact valid only among the decoupled high mass

components within the core. Spitzer (1969) has shown that in simple two-component

systems consisting of masses m1 and m2, with m1 ≪ m2, global equipartition cannot be

attained if the low-mass component determines the potential everywhere in the cluster.

In this case, the high mass components become dynamically decoupled from the rest

of the cluster, and the cluster core collapses to a much smaller radius, Rcore. This

picture has been confirmed by numerical simulations for more general mass functions

(Watters et al., 2000, and references therein). Atakan Gurkan et al. (2004) showed that

approximate local thermal equipartition is attained within the core, and velocities follow

vm = (Km/mBH)−1/2vcore, where vcore is the velocity dispersion, mBH is the mass of

components in the core, K describes the departure from equipartition, it is a number

of order 1. The total time of the collapse and the final magnitude of core velocities or

core radius, depends sensitively on the initial fraction of binaries. For a single mass

cluster Heggie et al. (2006) found that 0.01 ∼< Rcore/Rgc ∼< 0.1, larger values valid for a

large fraction of binaries (here Rgc is the half-mass radius). In contrast my simple mass

segregation led to R50M⊙
= 0.14Rgc, which is a factor 1.4–14 higher. Note, that the

virial theorem implies vm ∝ Rm for a homogeneous mass distribution. Detection rates

scale with R−3
m v−1

m , and the contribution of m∼ 50M⊙ dominated the final results (see

Figures 4.6 and 4.7). Therefore post-core collapse mass segregation implies detection

rates increased by (1.4)4–(14)4. Thus, in the most optimistic case, I get a substantial

increase in the detection rates, i.e. 2.1yr−1 for InLIGO, 2.8yr−1 for VIRGO, 6.6 day−1

for AdLIGO, 0.1yr−1 for LISA, and 4.4 hr−1 for NGLISA!

On the other hand, if core collapse leads to runaway collisions and the buildup of a

single intermediate mass black hole, while stellar mass BHs are ejected from the cluster

(Freitag et al., 2006), PE detection rates might be considerably suppressed after collapse

(i.e. ν ∝ N2
BH). More information on the typical properties and long-term evolution of

core collapsed clusters is needed to make PE detection rates less uncertain.
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4.7.4 Implications

Opening the gravitational-wave window to observe parabolic encounters of black holes in

globular clusters offers a new possibility to constrain BH mass functions and GC models.

Since PEs are very sensitive to the number of higher mass stellar BHs (Figures 4.6 and

4.7), my results indicate that a regular detection of PE events would provide accurate

limits on the stellar BH mass distribution in GCs. My analysis shows that this might

be possible with AdLIGO if average GCs carry at least 500 BHs.

Galactic Nuclei

The analysis can be extended for other spherically symmetric systems using the scal-

ing ν ∝ N2
BHnsystemv

−1
vir . Consider first galactic nuclei, hosting 2500 BHs and ap-

proximately all of these BHs have undergone mergers (Portegies Zwart & McMillan,

2000). Galactic nuclei abundance in the universe is 100 times less than for GCs (Sec-

tion 4.4.2). Assuming that the virial velocity is a factor of
√

10 higher in galac-

tic nuclei and that the CO mass function has the same distribution as in GCs, I

get detection rates νgal = 52 × 1/100× 1/
√

10× νgc. However, the large number of

BH mergers likely increases BH masses in galactic nuclei. For a uniform distribu-

tion (i.e. p = 0) of NBH = 2500 between mmin = 80 and mmax = 100M⊙ I get

25002/[500× (100−80)/(100−5)]2 × 1/(100
√

10) = 1.8 times the rates shown in the cor-

responding row of Tab. 4.1 for GCs: 4.× 10−4yr−1 for InLIGO, 2.1× 10−3 for VIRGO,

0.61yr−1 for AdLIGO, and 5.2× 10−6yr−1 for LISA. These numbers should only be re-

garded as rough estimates, since they result from the direct application of simplified

GC model assumptions to galactic nuclei. The calculation assumed uncorrelated two-

body interactions which does not hold for motion in the potential of galactic centers

(Rauch & Tremaine, 1996).

Primordial Black Holes in Galaxies

For a second example consider the GW detections from galactic haloes comprised of low-

mass primordial BHs (PBHs) (see e.g. Abbott et al. 2005c and references therein). For

a quick upper-limit estimate on the PE detection rate I repeat my analysis for GCs by

changing the model parameters to describe galactic haloes. I assume NPBH = 1011 PBHs

within a maximum radius R = 5 kpc, a virial velocity vvir = 220 km/s, and a uniform

distribution of masses between mmin = 0.25M⊙ and mmax = 0.95M⊙. The maximum
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distance of a matched filtering detection at a characteristic frequency of 0.9fM max =

4260Hz with angular-averaged signal-to-noise ratio S/N = 5 is 0.33, 0.62, 4.5, 0, and

0.06Mpc for InLIGO, VIRGO, AdLIGO, LISA, and NGLISA, respectively. The final

result for the detection rate after the compilation of the full analysis described above

gives ν = 1.5× 10−11, 1.6× 10−11, 2.9× 10−10, 2.6× 10−11, and 1.4× 10−9, respectively.

These numbers are comparable to the total NS–NS PE rate in GCs. It is 9 orders of

magnitudes smaller than the event rates estimates for PBH binary coalescence in one

Milky Way sized galaxy (Abbott et al., 2005c; Ioka et al., 1998).

Unresolved Parabolic Encounter Background

Another extension of the present analysis is to estimate the number of low S/N PE

events, which possible add an unresolved astrophysical background to the GW detec-

tor noise budget similar to the unresolved WD background (Benacquista et al., 2004;

Cornish & Crowder, 2005; Hils et al., 1990; Nelemans et al., 2001) and unresolved cap-

ture sources (Barack & Cutler, 2004a). Since PE rates are progressively larger for pro-

gressively smaller characteristic frequencies, f0, and since all PE waveforms extend to

GW frequencies f ∼< f0, PE background will be most substantial for space detectors,

especially around the minimum frequency noise wall (fmin = 10−5–10−4Hz). The to-

tal number of PE events within a distance D, can be obtained from equation (4.19)

neglecting cosmology as

R =
4π

3
D3ngc

∫ fmax

fmin

dνII ≈ 2πD3ngcνII
1

(
fmin

f100

)−2/3

(4.43)

where fmax is the maximum frequency for PEs avoiding a collision, equation (4.32),

which drops out to leading order if fmin ≪ fmax. For D = 10 Gpc and fmin = 10−5Hz

(10−4Hz) I get one event every 1/R = 19 sec (88 sec), which corresponds to k = 5300

(110) events for a 10−5Hz (10−4Hz) frequency bin. If core contraction enhances PE rates

by a factor of 144 (see Section 4.7.3), I get k = 2× 108 (4× 106) events per frequency

bin.

These events will typically have a very low signal-to-noise ratio, e.g. for a sin-

gle PE encounter with f0 = 10−5Hz for m1 = m2 = 50M⊙ at dL = 10 Gpc I get

(S/N)1 ∼ 8× 10−9, and f0 = 10−4Hz yields (S/N)1 ∼ 2× 10−7 for LISA. Assuming that

average unresolved PE noise accumulates proportional to
√
k, I get a net amplitude of

only (S/N)net = 10−4 or 5× 10−4 for LISA even in the core contracted case for fre-
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quencies 10−5Hz or 10−4Hz, respectively. Thus, I anticipate that the unresolved PE

background adds a negligible amount to the LISA noise, and the unresolved PE back-

ground from stellar BH encounters will not be an issue for near-future extensions either.



Chapter 5

Concluding Remarks and the Doctoral

Theses

I conclude the dissertation with a bulleted list of the most important findings presented

in this work.

5.1 Quasar counterparts

1. I have considered the possibility that SMBH-SMBH mergers, detected as gravita-

tional wave sources by LISA, are accompanied by gas accretion and quasar activity

with a luminosity approaching the Eddington limit. Under this assumption, I have

computed the number of quasar counterparts that would be found in the three–

dimensional error volume provided by LISA for a given GW event, for various

masses and redshifts.

2. I computed the expected uncertainties caused by the LISA noise, cosmological

parameters, peculiar velocities, and weak gravitational lensing as a function of

redshift. I found that weak lensing errors exceed other sources of uncertainties on

the inferred redshift of the EM counterpart and increase the effective error volume

by nearly an order of magnitude.

3. I have proposed a new method to correct for the weak lensing uncertainties by

accounting for the matter distribution on large scales and calculated its efficiency.

The residual weak lensing uncertainties were found to remain the major limitations

of the localization of the redshift.

119



120 Concluding Remarks and the Doctoral Theses

4. Nevertheless, I found that for mergers between ∼ (4× 105 − 107)M⊙ SMBHs at

z∼ 1, the error box may contain a single quasar with a B-band luminosity LB =

(1010–1011)L⊙. Furthermore this allows to test the hypothesis that the counterparts

to SMBH merger events are quasars.

This would make the identification of unique EM counterparts feasible, allowing precise

determinations of the Eddington ratio of distant accreting SMBHs, and providing an

alternative method to constrain cosmological parameters.

5.2 Evolution of parameter estimation accuracy

5. I have developed a new harmonic mode decomposition (HMD) method to study

the feasibility of using LISA inspiral signals to locate coalescing SMBH binaries on

the sky, as the mergers proceed. This method is three order of magnitudes faster

to calculate the time evolution of the parameter estimation covariance matrix.

6. I have developed toy models and found a way to comprehend the evolution of

parameter errors. I found that exactly 4 combinations of the physical parameters

improve throughout the observation with the signal to noise ratio. Marginalized

errors cease to improve near merger.

7. I have explored in detail how the GW source localization accuracy depends on the

sky position, detector orientation, and observation time before merger. I found no

significant systematic effect with sky position except in the orbital plane.

8. According to my extensive HMD survey of potential LISA sources, it will be pos-

sible to trigger large field-of-view searches for prompt EM counterparts during the

final stages of inspiral and coalescence. My results indicate, for instance, that for

a typical z∼ 1 merger event with total mass M ∼ 105 − 107M⊙, a 10-day advance

notice will be available to localize the source to within a 10 deg2 region of the

sky. The advance notice to localize the source to a 10 times smaller area of 1 deg2

is < 1 day for the typical event, suggesting that a wide–field instrument of the

LSST class, with a 10 deg2 field-of-view, may offer significant advantages over a

smaller, 1 deg2 field-of-view instrument for observational efforts to catch prompt

EM counterparts to SMBH binary inspirals.
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The robust identification of such EM counterparts would have multiple applications

(Holz & Hughes, 2005; Kocsis et al., 2006), from an alternative method to measure cos-

mological parameters to precise measurements of merger geometries in relation to host

galaxy properties. If such EM counterpart searches can be implemented effectively and

successfully, LISA could become an extremely valuable instrument for astrophysics and

cosmology, beyond the original general relativistic measurement goals. Given the ad-

vance warning time capabilities established here, effective strategies for EM counterpart

searches, including the concept of partially dedicating a ∼> 10 deg2 field-of-view fast

survey instrument of the LSST class, can be considered in detail.

5.3 Expectations on Detecting GWs from Parabolic En-

counter

9. I have considered an additional possibility of GW bursts produced during unbound

orbits of stellar mass compact objects. I estimated the rate of successful detections

for specific detectors: the initial Laser Interferometric Gravitational-Wave Obser-

vatory (InLIGO), the French-Italian gravitational-wave antenna VIRGO, the near-

future Advanced-LIGO (AdLIGO), the space-based Laser Interferometric Space

Antenna (LISA), and the Next Generation LISA (NGLISA). The dominant con-

tribution among unbound orbits that have GW frequencies in the sensitive band

of the detectors correspond to near-parabolic encounters (PEs) within globular

clusters (GCs). I have constructed simple GC models to account for the compact

object mass function, mass segregation, number density distribution, and velocity

distribution.

10. I found that typical PEs with masses m1 = m2 = 40M⊙ are detectable with

matched filtering over a signal to noise ratio S/N = 5 within a distance dL =

200Mpc for InLIGO and VIRGO, z = 1 for AdLIGO, 0.4Mpc for LISA, and 1 Gpc

for NGLISA.

11. I estimated single datastream total detection rates of 5.5× 10−5yr−1 for InLIGO,

7.2× 10−5yr−1 for VIRGO, 0.063yr−1 for AdLIGO, 2.9× 10−6yr−1 for LISA, and

1.0yr−1 for NGLISA, for reasonably conservative assumptions.

12. I gave ready-to-use formulas to recalculate the estimates when these input param-

eters become better-determined.
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These estimates are subject to uncertainties in the GC parameters, most importantly

the total number and mass-distribution of black holes (BHs) in the cluster core. In

reasonably optimistic cases, I get ∼> 1 detections for AdLIGO per year. I can expect

that a coincident analysis using multiple detectors and accounting for GW recoil capture

significantly increases the detection rates. The regular detection of GWs during PEs

would provide a unique observational probe for constraining the stellar BH mass function

of dense clusters.



Appendix A

Parameters Estimation Errors in

Nonstationary Noise

A.1 Simple Toy Models

A.1.1 Single Frequency Model

First, let us consider the following simple model with two unknowns, c0 and c1,

h(t) = c0 + c1 cos(2πf⊕t), (A.1)

where f⊕ ≡ yr−1 is fixed and assumed to be known prior to the observation. I call t

the “look–back time” before merger. Let us assume that the relative noise continuously

decreases during the observation and that the differential squared signal-to-noise ratio

(without modulation) is given by σ−2(t) = t−2 in eq. (3.50). Here t = 0 is a proxy for the

“merger”. Close to merger, the signal-to-noise ratio accumulates very rapidly. I assume

that h(t) is measured in the time interval ti ≥ t ≥ tf , where ti is the start of observation,

tf is the end of observation (i.e. x = tmerger − t, xmin = tf , and xmax = ti in eq. [3.50]).

I fix ti and examine the dependence of parameter estimation errors as a function of tf ,

assuming tf ≪ ti.

Note that, for the signal (A.1), the fiducial values (c0, c1) drop out when calculating

the RMS parameter errors ∆c0 and ∆c1 using eq. (3.50). More generally, this is true for

any signal which is a linear combination of the unknown parameters. All our toy models

123



124 Parameters Estimation Errors in Nonstationary Noise

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1

〈δ
p(
t f

)2
〉

tf/f
−1
⊕

δh(t) = δc0 + δc1 cos(2πf⊕t)

ti = 5f−1
⊕

(S/N)−2

〈δc2
0〉

〈δc2
1〉

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1

〈δ
v
(t

f)
2
〉

tf/f
−1
⊕

δh(t) = δc0 + δc1 cos(2πf⊕t)

ti = 5f−1
⊕

(S/N)−2

〈δv2
0〉

〈δv2
1〉

Figure A.1 Marginalized parameter errors (top) and principal errors (bottom) for the
single frequency model. The green curve shows the scaling with inverse squared signal-
to-noise ratio, (S/N)−2, for reference on both plots. A total observation of ti = 5yr
is assumed. Marginalized errors follow the signal-to-noise ratio for large tf , but they
stop improving within tf < tc ∼ 0.1yr from merger. Only one eigenvalue scales with the
signal-to-noise ratio near merger.

will have this property and the results presented in this section will be general in that

respect.

First, let us substitute (A.1) in (3.49) and (3.50), and evaluate the expected co-

variance matrix numerically. Figure A.1 displays the time dependence of marginalized

parameter errors and principal errors. The plots show that the parameter errors all

decrease with the signal to noise ratio when the look–back time before merger is large.

However if the end of the observation is within a certain critical time to merger, tf < tc,

only one principal component follows the signal-to-noise ratio. Figure A.1 shows that

tc ∼ 0.1yr. The start of the observation in Figure A.1 was fixed at ti = 5yr.

It is also interesting to examine what happens for general total observation times, do

errors stop improving within some time tc before merger? If yes, how does tc depend on

the two timescales ti and f−1
⊕ ? I examine this question numerically, substituting (A.1)

in (3.49) and (3.50) and now varying both tf/f
−1
⊕ and ti/f

−1
⊕ . Let us define the critical

end-of-observation, tc, as the time when the marginalized squared parameter error is first

within a factor of 2 of its final value. Figure A.2 plots the result for the two parameters.

Figure A.2 shows that tc is determined by f−1
⊕ for large ti, but becomes ti-dependent for

lower ti values. In the limit ti ≪ f−1
⊕ , the critical look–back time is independent of f−1

⊕ ,

it becomes a constant fraction of ti.

Note that, in the limit of an observation extending up to merger, at t = 0, the signal



Parameters Estimation Errors in Nonstationary Noise 125

0.001

0.01

0.1

1

0.01 0.1 1 10

t c
/f

−
1

⊕

ti/f
−1
⊕

δh(t) = δc0 + δc1 cos(2πf⊕t)

〈δc2
0〉

〈δc2
1〉

Figure A.2 Critical look–back time, tc, at which parameter errors stop improving. Here
tc is defined as the time at which marginalized squared errors are within a factor of 2 of
their final values for the first time.

becomes h(0) = c0 + c1 and it has infinite instantaneous signal-to-noise ratio. Therefore,

this is the best combination of parameters for which the scaling of errors can follow

(S/N)−1 all the way to t = 0. The worst combination is c0 − c1, which stops improving

before t = 0.

For this simple model, the origin of these features can be understood by analyzing

the principal errors and the marginalized errors in the error covariance matrix. For

this purpose, I present an analytical algebraic solution to this problem. To simplify the

equations, let us set the time-scale to f−1
⊕ /(2π). In this case the Fisher matrix (3.50) is

Γij(tf , ti) =




∫ ti
tf
t−2dt

∫ ti
tf

cos(t)t−2dt
∫ ti

tf
cos(t)t−2dt

∫ ti
tf

cos2(t)t−2dt


 . (A.2)

The integrals can be evaluated analytically,

Γij(tf , ti) =




1
t

cos(t)
t

+ Si(t)

cos(t)
t

+ Si(t) cos(2t)+1
2t

+ Si(2t)








tf

ti

, (A.3)
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where Si(x) =
∫ x

0
sin(x)

x
dx is the sine integral.

In the next two subsections, I find the limiting behavior of marginalized and principal

parameter errors in two different limits: f−1
⊕ ≪ ti and ti ≪ f−1

⊕ , respectively.

Long Observations (f−1

⊕ ≪ ti)

Here, I assume that the signal has been measured for a very long total time and I

concentrate on the effects of changing the end of the observation time, tf , near merger.

Therefore, I take the limit ti → ∞, for which

Γij(tf) =




1
tf

cos(tf )
tf

+ Si(tf)

cos(tf )
tf

+ Si(tf)
cos(2tf )+1

2tf
+ Si(2tf)





−


 0 π/2

π/2 π/2


 . (A.4)

I consider the case of a total observation time which is not negligible compared to a

cycle time, f−1
⊕ , i.e. tf ≪ ti. I next examine two possible cases, f−1

⊕ ≪ tf ≪ ti and

tf ≪ f−1
⊕ ≪ ti, separately.

First let us assume that the merger is still far away in time in units of a cycle period

(f⊕ ≪ tf ≪ ti). I substitute (A.4) in (3.49) and expand Γ−1(tf) into a t−1
f series:

(Γ−1)ij ≈
tf

1 − sin(2tf )
2tf

+ cos(2tf )−1
t2
f


 1 − sin(2tf )

2tf

2 sin(tf )
tf

2 sin(tf )
tf

2


 . (A.5)

Equation (A.5) gives the large tf behavior of marginalized errors and correlations, which

can be compared to Figure A.1 in the appropriate regime, tf > 1yr. In this case, to

leading order, all of the squared errors scale with tf , which is the scaling of the inverse

squared signal-to-noise ratio, (S/N)−2, for our noise model.

Next, let us examine the case when the end-of-observation time is close to merger,

i.e. tf ≪ f⊕ ≪ ti. Now, taking the inverse of the matrix and expanding into a tf series
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around tf = 0 gives

(Γ−1)ij ≈
2

π


 1 + 2

3π
t3f −1 +

t2
f

2π2

−1 +
t2
f

2π2 1 + π
2
tf


 , (A.6)

which gives the short timescale behavior of marginalized errors and correlations. The

eigenvalues of Γ−1 define the squared length of the individual principal axes of the

parameter error ellipsoid, in this case



 〈δv2
0〉

〈δv2
1〉



 ≈




tf
2

+ 3π
16
t2f

4
π

+ tf
2

+
(

5π
16

− 2
π

)
t2f



 . (A.7)

Note that, in eqs. (A.2)-(A.7), time is measured in units of f−1
⊕ /(2π). In full units, the

squared marginalized parameter errors (i.e. diagonal elements) of (A.6) become



 〈δc20〉
〈δc21〉



 =




2
π

[
1 +

(
tf

3
√

3/(16π2)f−1
⊕

)3
]

2
π

[
1 + tf

1

π2 f−1
⊕

]


 . (A.8)

For the eigenvalues (A.7), I get


 〈δv2

0〉

〈δv2
1〉


 =




tf/
(

1
π
f−1
⊕
)

4
π

[
1 + tf

4

π2 f−1
⊕

]


 . (A.9)

Equation (A.8) implies that the evolution of the marginalized squared error on c0 is very

flat for small tf , when the second term is negligible, i.e. tf ≪ 3

√
3

16π2 f
−1
⊕ = 0.267yr, then

rises steeply (∝ t3f ). The marginalized squared c1 error is also constant near merger,

for tf ≪ 1
π2f

−1
⊕ ≈ 0.1yr, and it increases ∝ tf ∼∝ (S/N)−2 for larger tf . Equation (A.9)

shows that one of the principal errors has a very different time-evolution: it has no

constant term proportional to t0f . Therefore the semi-minor axis of the error ellipsoid

can decrease continuously with the signal to noise ratio. On the other hand, the semi-

major axis becomes constant for tf ≪ 4
π2 f

−1
⊕ = 0.4yr. Since the marginalized errors are

nontrivial linear combinations of the principal errors, the constant principal error carries

over to both marginalized errors and dominates their evolution. All of these findings are

in excellent agreement with the numerical results shown in Fig. A.1 for tf ≪ 1yr and in

Fig. A.3 for ti/f
−1
⊕ > 1.
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It is worth emphasizing that, even if the total observation time had been infinite,

ti →∞, the parameters could not have been estimated to infinite precision in this model.

It is not very surprising if one recalls that in this model I defined errors to be infinitely

large at infinitely early times (σ2(t) ∝ t2). For stationary noise, the contribution of the

last cycle to the resultant RMS estimation error for a total observation of Ncyc cycles is

1/
√
Ncyc. In contrast, rather than the total number of cycles, the typical error during

the last cycle dominates the determination of noise, for the particular noise model used

here.

The main conclusion from this toy model analysis is that errors stop improving

close to merger, at tc ∼ 0.1f−1
⊕ . It can be extended to more general noise models, with

σ−2(t) = t−α and α 6= 2. Repeating the calculations for larger α values, I find that

parameter estimation errors become more and more insensitive to very early times,

tf ≪ t∼ ti, and that marginalized parameter estimation errors cease to improve at some

tc, which is now an α-dependent fraction of a single cycle time before merger. For

α > 2, I find that errors increase more abruptly at tf ∼> tc, which is consistent with the

signal-to-noise ratio being a steeper function of time. On the other hand, for lower α

values, parameter estimation errors become more and more sensitive to very early times,

tf ≪ t∼ ti. In this case, the marginalized parameter estimation errors are again very

slowly changing for 0∼ tf < tc, but the approximate time tc at which parameter errors

stop decreasing will be primarily determined by ti, rather than by the cycle period f−1
⊕ .

The transition at tf ∼> tc is not as abrupt, but extends to several cycles. The α = 0

case corresponds to a stationary instantaneous signal-to-noise ratio, with errors scaling

slowly as 1/
√
ti − tf . This case is irrelevant to LISA inspiral signals, which have α∼ 2

to a good approximation for 1day < t < ti in the relevant range of SMBH masses.

Short observations (ti ≪ f
−1

⊕ )

Let us now examine the opposite limiting case, where the start of observation time is

already within the final cycle before merger. This is relevant to LISA signals, since the

observation time of SMBH inspirals is often below a full year, especially for (1+ z)M ≥
4× 106M⊙.

I again restrict ourselves to the case with a total observation time that is non-

negligible, i.e. tf ≪ ti. Using time units of f−1
⊕ /(2π), expanding (A.3) into a series
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of both ti and tf/ti, I get

(Γ−1)ij ≈ 120

t3i (10 − t2i )







 1 −1

−1 1





+
tf
ti




30−10t2i
10−t2

i

−30−5t2i
10−t2

i

−30−5t2i
10−t2

i

30− 5
3
t2i

10−t2
i




 (A.10)

Equation (A.10) gives the parameter estimation covariance during the final stages of

observation before merger for small total observation times. In this case, the final errors

strongly depend on the total observation time. The errors reach their final values when

the second term becomes negligible in eq. (A.10). To leading order, this happens at

tc ∼ ti/3 for both parameters, independently of the cycle time, f−1
⊕ . Equation (A.10)

approximates well the ti dependence of tc shown in Fig. A.2 for ti/f
−1
⊕ < 0.2

A.1.2 Double Frequency Model

Now consider a more elaborate model with five unknowns c0, s1, c1, s10, and c10:

h(t) = c0 + s1 sin(2πf1t) + c1 cos(2πf1t)

+s10 sin(2πf2t) + c10 cos(2πf2t). (A.11)

Here, the signal is comprised of two different characteristic frequencies, f1 and f2, for

which I assume f1 ≪ f2. Moreover I assume that f1 and f2 are fixed and known prior to

the measurement, e.g. I take f1 ≡ 1yr−1 and f2 ≡ 10yr−1. I again assume an observation

in the look–back time interval ti ≥ t ≥ tf and take the average instantaneous signal-to-

noise ratio to increase as σ(t)−2 = t−2.

Let us substitute in (3.49) and (3.50), and evaluate the expected covariance matrix

numerically. Figure A.3 displays the results. As in the previous model, these plots

show that all parameter errors decrease with signal to noise ratio until the last cycle

and all marginalized errors stop improving beyond some nonzero residual error at late

times. Thus, the general trends shown in Fig. A.3 are very much similar to the ones

in the previous simple model (Fig. A.1). Again, contrary to the standard 1/
√
Ncyc

expectation, the error during the last cycle dominates the total error of the accumulated

signal. Moreover, comparing Figs. A.1 and A.3 shows that the presence of additional
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Figure A.3 Marginalized parameter errors (top) and principal errors (bottom) for the
double frequency model. The green curve shows the scaling with (S/N)−2 for reference
on both plots. A total observation time ti = 5yr is assumed. Marginalized errors follow
the signal-to-noise ratio for large tf values, but they stop improving after tf ∼< 0.1f , for
both frequencies. By comparing the two plots, it is clear that high frequency component
errors decouple and that they are determined by two corresponding eigenvalues in the
bottom panel.

independent high frequency degrees of freedom practically does not modify the evolution

of marginalized parameter errors associated with low frequency components, if ti > f−1
1 .

During the final cycle, the error ellipsoid becomes “thin” and the narrow dimension

will not be aligned with any of the parameters. As a result, this bad principal error

dominates each of the marginalized parameter errors at late times. (Note that the

start-of-observation time in Figure A.3 is ti = 5yr.)

The critical look–back time, tc, at which this happens is different for the different

frequency components. The top panel in Fig. A.3 shows that tci ∼ 0.1fi approximately

for both sets of components (s1, c1) and (s10, c10), where fi denotes the corresponding

frequencies f1 = 1yr−1 and f2 = 10yr−1, respectively. The bottom panel in Fig. A.3

shows that the principal errors separate in three groups. There is one best eigenvector

that improves continuously until the end, two that stop improving near tc1 ∼ 0.1f1 and

two that stop improving at tc2 ∼ 0.1f2. The high frequency parameters (s10, c10) totally

decouple from the two worst principal components, (v0, v1), and, as a result, decouple

from the low frequency parameters (c0, s1, c1) which are primarily determined by (v0, v1).

As for our previous model in § A.1.1, the critical look–back time is generally different

for different ti values. The bottom panel in Figure A.4 shows the time tc at which the

squared errors first double, as a function of ti/f
−1
1 , as in Fig. A.2. Fig. A.4 justifies the
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Figure A.4 Critical look–back time, tc (as in Fig. A.2), at which marginalized param-
eter errors stop improving. Top: Only (c0, s1, c1) are allowed to vary, using the prior
(s10, c10) ≡ (0, 0). Bottom: All 5 parameters (c0, s1, c1, s10, c10) are determined from the
observation. For ti ∼> f−1

1 , estimations of low frequency parameters (c0, s1, c1) stop im-
proving at tc ∼ 0.1f−1

1 , while improvement for high frequency parameters occurs all the
way to tc ∼ 0.1f−1

2 .

rule-of-thumb scaling tci ∼ 0.1fi if the observation time is at least one cycle period, f−1
1 .

The central question for the present analysis is how sensitive is the time evolution

of low frequency modulation errors to the presence of high frequency components. I

can examine this question by computing the critical look–back time, tc, when the high

frequency terms are totally neglected. The top panel in Fig. A.2 shows that, if one

limits the parameters to (c0, s1, c1), and the total observation time is not smaller than

the long-period cycle time, ∼ f−1
1 , the resulting tc value for parameters c0 and c1 is

unchanged at the few percent level. However, if the high frequency components are

introduced, the s1 error evolves differently since it asymptotes already at much larger tc

values (∼ 0.1f−1
1 rather than ∼ 0.03f−1). The reason is that, for small t, with a noise

level decreasing quickly, the corresponding function s1 sin(2πf1t) ≈ 2πf1s1t is linearly

independent of, and thus uncorrelated with, the functions c0 and c1 cos(2πf1t) which

are both constant to first order. Hence, if there are no more unknowns than (c0, s1, c1),

then c0 and c1 are correlated while s1 is decoupled and can be determined independently

of the other parameters. However, if I add any parameters which are not constant

for t ≪ f−1
1 , then s1 becomes correlated with those. This is exactly what happens in

the bottom panel of Fig. A.2, when considering the high frequency modulations: the

estimation on s1 becomes limited for t ∼< tc1 ∼ 0.1f−1
1 due to the correlations with s10

and c10. Quite similarly, if one introduces any other low-frequency function that is not

constant to first order, like s2 sin(4πf1t), then the correlations with this parameter will
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limit the improvement of estimation errors for s1 at tc ∼ 0.1f1, even when neglecting

the high frequency components. As I shall see, this is the case for LISA: there are

generally more than one sin and cos low-frequency modes. In this case, the evolution of

estimation errors for low frequency parameters can be obtained with the high frequency

modes (like s10 and c10) priored out. This justifies our simple intuition: once the signal

is decomposed into different time-scale components, the parameter estimation problem

becomes separable and the evolution of parameter errors corresponding to different such

time-scales can be estimated independently from each other.

Rather than going through an analytical derivation as in § A.1.1, I answer one re-

maining question here: what combination of the original parameters (c0, s1, c1, s10, c10)

corresponds to the best principal component, v0, which can be determined extremely

accurately at late times, tf → 0? At t = 0, the noise drops to zero. Therefore, the

quantity I can measure using the t = 0 information is simply h(t = 0). Looking back at

eq. (A.11), this is c0 + c1 + c2. It will be interesting to look for similar “best determined

combinations” of physical parameters for the case of the LISA’s realistic signals.

A.1.3 Four data-stream models

For our final toy model, I insert additional features of a realistic LISA data-stream.

I consider five low frequency unknowns, c0, s1, c1,s2, c2, and a high frequency carrier

signal with additional unknowns s10, and c10. Moreover I consider the simultaneous

measurement of four data-streams. The signal is

h(t) = c0 + s1 sin(2πf1t+ ϕs1

i ) + c1 cos(2πf1t+ ϕc1
i )

+s2 sin(2πf1t+ ϕs2

i ) + c2 cos(2πf1t+ ϕc2
i )

+s10 sin(2πf2t) + c10 cos(2πf2t), (A.12)

where ϕc1,s1,c2,s2

i (i = 1 . . . 4) are fixed at a priori randomly chosen numbers defining

the relative phases of the various modes which are being simultaneously measured. I

compute independent Fisher matrices for each four set of ϕc1,s1,c2,s2

i . I assume that

f1 ≪ f2 and that f1 and f2 are fixed and known prior to the measurement. I choose

f2 = 10f1 and find the evolution of marginalized errors and principal errors in two limits:

(i) neglecting cross-correlations with the high frequency parameters by assuming a

prior δs10 = δc10 = 0, and



Parameters Estimation Errors in Nonstationary Noise 133

(ii) accounting for these high frequency parameters.

I again assume an observation in the look–back time interval ti ≥ t ≥ tf and take the

average instantaneous signal-to-noise ratio to increase as σ(t)−2 = t−2.

The results for these models are shown in Figure A.5. Th marginalized errors (top)

and principal errors (bottom) are shown for both cases (i) and (ii) above. The figures

show that, in agreement with our previous model, uncertainties on the low frequency

parameters are not affected by the high frequency parameters, except during the final

0.1 cycle time of the high frequency component, 0.1f−1
2 . The figures also show that the

four principal components of the error ellipsoid improve quickly at late times.

Marginalized parameter errors improve quickly if they have negligible projection on

the bad directions of the error ellipsoid. As a result, our expectation is that errors will

typically not stop improving abruptly, but that there will be a shallower evolution in

the final two weeks. In the worst case for a given parameter, if it is aligned with the bad

ellipsoid principal component, it will stop improving near merger. In the best case, if the

parameter is orthogonal to the bad ellipsoid principal component, it will improve quickly

throughout the final days of inspiral. Therefore, I understand that the distribution of

errors broadens for tf ≪ 0.1f−1
1 .
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Figure A.5 Marginalized parameter errors (top) and principal errors (bottom) for the
four data-stream model. Pairs of curves with the same line style show results for cases
with five and seven parameters. The extra two parameters correspond to high frequency
(f2) components, which affect errors on the other parameters through correlations only
slightly (factor of ∼< 2) if tf ∼< 0.1f−1

2 . The green curve shows the scaling with inverse
squared signal-to-noise ratio, (S/N)−2, for reference on both plots. A total observation
time ti = 2yr is assumed. Marginalized errors follow the signal-to-noise ratio for large tf
values. Four principal errors scale with the signal-to-noise ratio near merger.
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A.1.4 Best Determined Parameters

In the previous section, I have shown that, if the noise decreases quickly like t2 near

merger (at t = 0), the best-determined parameters are the eigenvectors of the error

covariance matrix that improve with (S/N)−1. Near merger, these are the independent

detector outputs at t = 0. In the case of LISA inspirals, the observation only extends

down to ISCO. In this case, the best determined combination of physical parameters

p1 at ISCO are the real and imaginary parts of hI,II
1 (p1). To prove this, I have to

show that these are uncorrelated and decrease with (S/N)−1. The functions hI(t) and

hII(t) are uncorrelated by construction, since they correspond to the two independent

Michelson detector outputs (see § 3.2.2 and Cutler, 1998). The real and imaginary

parts of one of the detectors, ℜe hI
1(t) and ℑmhI

1, are uncorrelated since they are the

coefficients of the high frequency carrier, sinφGW and cos φGW , for which correlation

over one φGW cycle (during which the detector noise is approximately constant) is zero.

Another way to see this is to focus on the real part in the definition of the Fisher

matrix (3.57), which is expressed as the integral of ℜe [∂ah
I,II
1 (t)∂bh

I,II
1 (t)]. The term

in brackets is purely imaginary for the cross correlation of ℜe hI
1(t) and ℑmhI

1, hence

the real part is always zero. Therefore, the correlation matrix for ℜe hI,II
1 ,ℑmhI,II

1 is

diagonal. For diagonal terms, the derivatives are 1 and the integrals become simply∫
σ−2dt, which is exactly (S/N)2. The RMS estimation uncertainty of ℜehI,II

1 (p1) and

ℑmhI,II
1 (p1) follows the (S/N)−1 all the way down to ISCO. These best combinations are

d−1
L (1 + cos2 θNL)F I,II

+ (Ω) and d−1
L cos θNLF

I,II
× (Ω).

The evolution of an arbitrary combination of angles will be determined by the pro-

jection of this combination on the covariance matrix eigenvectors. A linear combination

of good eigenvectors leads to similarly quick improvement of errors with (S/N)−1. How-

ever, as soon as there is a nonzero projection on the fifth eigenvector, the estimation

uncertainty will stop improving at ∼ 0.1Tcycle which, for the highest j = 4 harmonic, is

between 1–2 weeks.

A.2 Angular variables

Here I define the relative angles θNL and φNL, using the polar angles (θN , φN) and

(θL, φL) and the corresponding unit vectors N̂ and L̂.

Let us write a rotation around ẑ and ŷ as Oz(φ) and Oy(θ), respectively. Then,
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ẑ = Oy(−θN )Oz(−φN )N̂ and I define




sin(θNL) cos(φNL)

sin(θNL) cos(φNL)

cos(θNL)


 ≡ Oy(−θN )Oz(−φN)L̂. (A.13)

This uniquely defines θNL and φNL, which correspond to the relative latitude and lon-

gitude, respectively. More explicitly, I get

θNL = arccos(N̂ · L̂) = (A.14)

= arccos [sin θN sin θL cos(φL − φN) + cos θN cos θL] ,

φNL =





2π − φ0 if (φL − φN)/π ∈ [−1, 0]
⋃

[1, 2]

φ0 otherwise
, (A.15)

where

φ0 = arccos

(
cos θN sin θL cos(φL − φN) − sin θN cos θL

sin θNL

)
. (A.16)
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Appendix B

Parabolic Encounter Event Rates

B.1 Approximate Analytical Formulae

The integrals given in Eq. (4.19) can be carried out analytically as a Taylor-expansion

with respect to the small quantities κBH = mmin/mmax and κNS = mNS/mmax. The PE

event rate is calculated in three parts

νII
1 = νII

1,BH−BH + νII
1,BH−NS + νII

1,NS−NS, (B.1)

where νII
1,BH−BH, νII

1,BH−NS, and νII
1,NS−NS are the event rates of BH-BH, BH-NS, and NS-

NS encounters. Substituting the mass dependence in Eq. (4.19) I get,

νII
1 (m1, m2) =

G4/3

(4π)2/3

N2
CO

R3
gcvvir

(m1 +m2)
4/3m

3/2
>

(m−1
1 +m−1

2 )1/2
f
−2/3
100 , (B.2)

νII
2 (m1, m2) =

21/3G2/3

3π4/3

N2
COvvir

R3
gc

(m1 +m2)
4/3(m−1

1 +m−1
2 )1/2m

3/2
> f

−4/3
100 . (B.3)

Next I present ready-to-use formulas for calculating the detection rates of PEs. As-

suming a constant density of GCs, no cosmological and no general relativistic corrections,

the detection rate per logarithmic frequency bin becomes

dνtot

d ln(f0)
= k

(2GM⊙)19/3

c12
ngcN2

COR
−3
gc v

−1
virf

4/3
0

(
W (f0)

S/N

)3

K(f0, λ) (B.4)

where S/N is the minimum signal-to-noise ratio (which is set equal to 5 in our numerical
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results above), k ≡ 853/221/3π7/3/6144 = 2.323 is a constant coefficient, vvir is the virial

velocity (4.9), ngc is the average GC density in the universe, Rgc is the typical radius of

the GC, NCO is the number of COs in the GC, K(f0, λ) and W (f0) are dimensionless

terms, K(f0, λ) depending on the CO mass distribution, gCO, and W (f0) on the normal-

ized GW energy spectrum F (f/f0) Eq. (4.5), and the detector spectral noise density,

Sn(f):

K(f0, λ) =

∫ ∫

f0≤f0,max[M⊙(x1+x2),λ]

dx1dx2 gCO(x1)gCO(x2)
(x1x2)

7/2x
3/2
>

(x1 + x2)1/6
, (B.5)

W (f0) =

√
4

5

∫ fmax

fmin

1

f 2

F (f/f0)

Sn(f)2
df. (B.6)

In terms of f0, K(f0, λ) is constant for f0 ≤ f0,max(2mmin, λ), decreases monotonically

for larger f0 and attains 0 for f0 ≥ f0,max(2mmax, λ) (see Eq. [4.33] for the definition of

f0,max(M,λ), and mmin and mmax are the minimum and maximum masses of the COs, re-

spectively). In Eq. (B.5), the integration variables x1 and x2 are the dimensionless masses

of the COs, for which mmin/M⊙ ≤ x1,2 ≤ mmax/M⊙. For core collapsed clusters M⊙ has

to be changed to mcore, the typical mass of individual components in the core, Rgc has

to be changed to Rcore, and vvir to vcore. These values should be set consistently with the

core velocity dispersion and core radius which are input parameters for a globular cluster

model. For given m components, the velocity dispersion is then vm = (m/mcore)
−1/2vcore

and maximum radius from the cluster center is Rm = (m/mcore)
−1/2Rcore.

The total detection rate of parabolic encounters (again assuming a constant density

of GCs and no cosmological and general relativistic corrections) is

νtot = k
(2Gmcore)

19/3

c12
(S/N)−3ngcN2

COR
−3
corev

−1
core

∫ f0,max(2Mmax,λ)

fmin/10

df0 f
1/3
0 W (f0)

3K(f0, λ).

(B.7)
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