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1 Magyar nyelv¶ kivonat

A galaxisklaszterek meg�gyelése a
Sunyaev-Zel'dovich e�ektus segítségével

A Sunyaev-Zeldovich (SZ) e�ektus egyre értékesebb meg�gyelési lehet®-
séget nyújt az asztro�zika számára. A jelen technológiai fejl®désnek köszön-
het®en az SZ e�ektus immár alkalmas a masszív klaszterok feltérképezésére,
az intraklaszter közeg (ICM) vizsgálatára és a kozmológiai paraméterek meg-
szorítására.

A termikus SZ e�ektus a kozmikus mikrohullámú háttérsugárzás (CMB)
másodlagos �uktuációja, ami forró intergalaktikus gázzal való kölcsönhatás
során jön létre. Az utolsó szórási felületr®l érkez® hideg CMB fotonok in-
verz Compton-szóródnak, ami kicsiny intenzitás gyengülést okoz kis illetve
er®södést okoz nagy energián (ν . 218GHz ill. ν & 218GHz). Az SZ e�ektus
a CMB anizotrópia domináns forrása kis szögskálán.

Jelen m¶szerek jelent®s jel-zaj aránnyal detektálnak klasztereket. A kö-
vetkez® generációs m¶szerek által alkotott galaxis klaszter térképek az ég-
bolt jelent®s részét le fogják fedni. A klaszterek számosságát illetve ezek
szögfügg® teljesítményspektrumát többen vizsgálták (lásd pl. [3] [4] [5] [6]).
A felmérések eredménye meglehet®sen leny¶göz®, a következ® generációs SZ
m¶szerek várhatóan naponta több klasztert kell, hogy észleljenek.

Az SZ e�ektus meg�gyelése napjainkban kezdi feltárni a benne rejl®
lehet®ségeket. A jelenleg m¶köd® SZ meg�gyelések közé tartozik a BIMA,
a Diabolo, a SuZIE, a Ryle Távcs®, az OVRO és a CBI. Ezeken kívül a kö-
vetkez® generációs bolometrikus és interferometrikus m¶szereinek építése a
végs® stádiumhoz közelít. Ilyenek az SZA, az AMI és az AMiBA teleszkóp-
rendszerek. Ezen m¶szerek több nagyságrenddel lesznek érzékenyebbek, mint
az el®djeik. A jelen évtized második felében tovább folytatódik az SZ m¶-
szerek fejlesztése, hisz az elmúlt évben számos hosszú távú program nyert
támogatást: az APEX, az ACT, az SPT, a Planck és az ALMA.
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A dolgozat legf®bb célkit¶zése annak a vizsgálata, hogy az említett követ-
kez® generációs m¶szerek közül az ALMA milyen mértékben képes a galax-
ishalmazokról alkotott bizonyos ismereteinket javítani. A klaszterek belse-
jében lev® anyag SZ lenyomatának mérésével, az ionizált gáz s¶r¶ségeloszlá-
sát lehet meghatározni és ebb®l következtetéseket lehet levonni a sötét anyag
struktúrára vonatkozóan.

A galaxisfejl®dés klasszikus elmélete szerint [14] a klaszterek önhasonló
akréción keresztül jönnek létre. A kis méret¶ s¶r¶södési perturbációk felé
gömbszimmetrikus anyagáramlás indul. Az elmélet jóslata szerint, tiszta
ütközéses vagy ütközésmentes anyag esetén, � vagy akár a kett® együttes
keveréke mellett � a folyamat végén stacionárius önhasonló egyensúly áll be
az anyagtöbblettel rendelkez® s¶r¶ségingadozás körül. A klasztergáz beesését
megállítja egy, a középpontból kifelé haladó, lökéshullám. A gáz sugárirányú
s¶r¶ségfüggvényében a lökés közelében egy ugrás alakul ki, ahol a s¶r¶ség
a bels® oldalon lényegesen megnövekedhet. Vannak bizonyos meg�gyelések,
amelyek szerint együttes optikai-, rádió- és röntgenmeg�gyelések segítségével
[15] ezt a s¶r¶ség lökést már meg is �gyelték bizonyos keletkez® klaszter pro-
totípusok körül. Elméletileg ezen diszkontinuitás léte a SZ e�ektus mérésével
is bizonyítható.

Mindezidáig a Sunyaev-Zel'dovich e�ektusra vonatkozó tanulmányok nem
vették �gyelembe a klaszterek peremén megjósolt gázs¶r¶ség radiális levá-
gását. A leggyakrabban használt egyszer¶ leírás az ún. �β-modell� (lásd
Cavalier, [17]). Ezen modell egy egyszer¶ empírikus illesztési formulát je-
lent a gázs¶r¶ség pro�lra vonatkozóan, amely független a háttérben rejl®
sötét anyag eloszlástól, mindazonáltal nem mond ellent a jelen SZ és rönt-
gen meg�gyelés-eknek (lásd Mohr, [18]). Ett®l részletesebb modellek meg-
próbálják levezetni a gáz s¶r¶ség pro�lt azáltal, hogy izotróp hidrosztatikai
egyensúlyt feltételeznek a gáz és sötét anyag eloszlás között. Az öngrav-
itáló ütközésmentes sötét anyag s¶r¶ségpro�lját numerikus N-test szimulá-
ciók segítségével hozzák létre. A két csoport Navarro et al. [21] illetve
Moore et al. [22] megegyeznek abban, hogy a pro�lt egy univerzális függ-
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vény írja le, amely a küls® tartományban r−3 szerint csökken. A bels® tar-
tományokra vonatkozó hatványkitev®t tekintve azonban eltér a véleményük,
−1 ill. −1.5 a két vitatott érték. A gázs¶r¶ségre vonatkozó megoldást ezen
sötét anyag háttéren adja meg például az ún. �levágott izoterm gömb modell�
(lásd Shapiro, [16]). Az izoterm elképzelést módosítja az �el®f¶tött modell�
(lásd Holder és Carlstrom [19]) egy h®mérsékletfügg®, nem gravitációs ere-
det¶ entrópia alapot feltételezve a klaszter magjának közelében. Egy követ-
kez® megközelítés szerint (lásd Komatsu és Seljak, [20]), � a sötét anyaghoz
hasonló módon � a gáz s¶r¶ség is egy univerzális önhasonló alakot vesz fel.
A legkorszer¶bb hidrodinamikai numerikus szimulációk [7] összhangban van-
nak a fenti modellekkel. A klaszter számláló statisztikára és a szögfügg®
teljesímény spekt-rumra vonatkozó röntgen és SZ e�ektus jóslatok némileg
eltérnek, azonban a meg�gyelési mélység és érzékenység mindezidáig nem
jutott el arra a szintre, hogy dönteni tudjon a különböz® modellek között.

A dolgozatban Komatsu és Seljak izotróp, univerzális, önhasonló gázra
vonatkozó feltételezését követtem [20], de bevezettem egy lineáris levágást
a gázs¶r¶ség eloszlására vonatkozóan egy véges sugáron kívül. A sötét en-
ergiát is tartalmazó, lapos geometriájú, hideg sötét anyag modellt (ΛCDM)
használtam a jelen WMAP méréseknek megfelel® paraméterekkel: (ΩΛ, Ωdm,

Ωb, H0) = (0.7, 0.253, 0.047, 70× km/sMpc).
A dolgozatban megmutattam hogy a közel-jöv®ben megvalósuló Atacama

Large Millimeter Array (ALMA) a Sunyaev Zel'dovich e�ektus vizsgálatá-
val els®ként alkalmas lehet a klaszterek pontos gázeloszlásának vizsgálatára.
A program realitását jelzi, hogy az ALMA prototípus teleszkóp, � egy 12m
átmér®j¶, multifrekvenciás rádióteleszkóp,� az APEX, már várhatóan idén,
2004 második felére elkészül. A végs® állapotát az ALMA rendszer 2012-
ben éri el. A cél hatvannégy APEX teleszkóp összehangolt üzemeltetése. A
m¶szer minimális illetve maximális karhosszúsága 150 m ill. 10 km. Ezen
m¶szer tervezett érzékenységére és lineáris méretére vonatkozó számítások
alapján reális feltételezés 10µK-nél kisebb SZ h®mérsékleti zajt tekinteni
2” szögfelbontás és 100GHz munkafrekvencia mellett. Ezt az érzékenységet
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körülbelül 30 óra meg�gyelési id®vel lehet elérni. A meg�gyelési id®t tovább
növelve a detektor bizonyta-lanság tovább csökkenthet®.

A gömbszimmetrikusnak feltételezett, sztatikus esetre vonatkozó, hidrod-
inamikai egyenleteket önhasonló gázra oldottam meg, a megfelel® sötét anyag
hátterének �gyelembevételével. A sötét anyag pro�lt a szokásos módon α-val
paramétereztem, és minden számolást α mindkét értékére elvégeztem, azaz
α = 1 ill. 1.5-re. Ebben a tárgyalásban a s¶r¶ség a sugár függvényében kic-
siny, többszörös viriálsugáron kívül is véges járulékot ad. Ezeb kiinduló mod-
ellhez képest a s¶r¶ségpro�lban bevezettem egy hipotetikus lineáris radiális
levágást, ahol a s¶r¶ség hirtelen zérusra csökken. Ez a feltételezés konzisztens
a klaszterek fejl®désének elméletével (lásd [14] and [15]).

Erre az eloszlásra vonatkozóan kiszámoltam az SZ kép megváltozását az
ALMA detektor esetén. A detektor és a háttér együttes hatására 10µK

Gauss fehér zajt feltételeztem. Megkonstruáltam a korábbiakban kiszámolt
önhasonló s¶r¶ségpro�lhoz illesztett optimális sz¶r®t. A megfelel® likeli-
hood függvényt használtam a levágásos és a levágás nélküli SZ hipotézis-
pro�lok közötti döntés elvégzésére illetve a döntés szigni�kancia szintjének
vizsgálatára. Fontos hangsúlyozni, hogy ezen teszt gyakorlatilag modell-
független, hiszen csak kis mértékben függ a klaszter bels® tartományaitól
azonban a küls® régióban �ahol az irodalomban található különböz® mod-
ellek azonos eloszlást jósolnak � szigni�káns függés adódik. Kétféle mó-
don számoltam ki a jel-zaj hányadost, négy illetve kett® szabad paraméter-
rel. Az el®bbit jelöljük Model I-nek az utóbbit pedig Model II-nek. Ezek
a paraméterek az I esetben a peremhez tartozó radiális távolság, xmax, a
levágás �vastagsága�, D, a koncentráció paraméter, c, és a középponti SZ
h®mérséklet csökkenés T (0). A II esetben a c és a T (0) paramétereket a
klaszterek gömb-szimmetrikus összeomlására vonatkozó elméletéb®l kaptam
meg, és ez körül semmilyen ∆c ill. ∆T (0) szórást nem engedtem meg. Egyéb
paraméterek, mint a viriál tömeg, Mvir, a vöröseltolódás, z, a bels® sötét
anyag exponens, α, és a klaszter szögmérete,Θ, lényegesen nagyobb pon-
tossággal mérhet®k, ezért ezeket nem változtattam. Az eredmények 10%-tól

6



kevésbé térnek el a Modell I és a Modell II esetén. A jel-zaj hányados egy
nagy tömeg¶ klaszter esetén (Mvir = 1015 × M¯) S/N = 470, egy normál
klaszterre pedig (Mvir = 1014×M¯) S/N = 16. Ebben a számolásban a c és
a T (0) paraméterekre feltételeztem, hogy megegyeznek a korrekt értékekkel,
mind a levágásos mind a levágás nélküli esetben.

Ezután, egy realisztikusabb esetet tekintettem, amelyben a klaszter paramétereit,
� levágással vagy anélkül, � külön-külön illesztettem egy adott meg�gyelés
esetén. Ebben az esetben az derült ki, hogy a határ nélküli esetben jelent®s
szisztematikus hiba adódhat a c illetve T (0) értékeire vonatkozóan. Ennek
feltétele, hogy a klaszternek valóban létezzék határa, mégpedig legfeljebb
kb. 1 virál sugár körül. A jel-zaj arány mindazonáltal, a � arra a kérdésre,
hogy létezik-e a klaszternek pereme, � legfeljebb 56%-al csökken le az eredeti
egyszer¶bb számoláshoz képest.

Végül megvizsgáltam a paraméterbecslés pontosságát a peremet tartal-
mazó modell esetén. Eredménynek a következ® értékeket kaptam:

(∆c/c, ∆T (0)/T (0), ∆xmax/c, ∆D/c) = (2.8%, 3.7%, 2.9%, 13%)

= (0.45%, 0.2%, 0.1%, 0.5%)

normál illetve masszív klaszter esetén. Mivel α és c között létezik egy egy-
egy értelm¶ megfeleltetés, c(α = 1)/c(α = 1.5) = 1.7, az SZ e�ektus képes
eldönteni, hogy melyik α modell írja le jobban a valóságot. A sötét anyagra
vonatkozó vitát ezzel a jöv®ben biztosan meg lehet oldani. Az itt feltüntetett
számokat a Fisher mátrixra vonatkozó közelítéssel kaptam. A dolgozatban
megvizsgáltam az egzakt valószín¶ségi eloszlást is, amik nagy pontossággal
(1%-on belül) megegyeztek a Fisher mátrixból származtatott értékekkel.

A dolgozatban minden számolást 18 féle paraméterválasztás esetén végeztem
el. Ez 3 × 2 × 3 blokkokra bomlik: a valódi klaszter viriáltömegét 1013,
1014 és 1015 × M¯, a valódi D értéket 0.01 és 0.5c, a valódi xmax értéket
1, 1.5 és 2c között változtattam. Ezen kívül a legegyszer¶bb esetekben,
(M, D, xmax) = (1015M¯, 0.01c, c) leellen®riztem a vöröseltolódás és α füg-
gést is. Általában azt kaptam, hogy a klaszter széle nagy tömeg és kis xmax
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értékek esetén detektálható legpontosabban. A vöröseltolódás függvényében
1 nagyságrend változás jöhet létre a jel-zaj arányban, és annak z ≈ 0.4 körül
minimuma van. Az α ill. D konkrét értéke viszont a hatékonyság szempon-
tjából közömbös.

Végeredményben tehét az SZ e�ektus mérésével az ALMA redszer nem
csak a klaszter szélének jelenlétét fogja tudni kimutatni, hanem annak helyét
is nagy pontossággal meg fogja majd állapítani. Ezen ismeretek egészen
biztosan el® fogják segíteni a klaszterek belsejében lév® anyag szerkezetének
pontosabb megértését.
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2 Introduction
The Sunyaev-Zel'dovich (SZ) e�ect has recently become a valuable obser-
vational tool [1]. Observational programs are beginning to measure the SZ
e�ect to map out massive clusters of galaxies, study the intracluster medium
(ICM), and constrain cosmological parameters [2].

The thermal SZ e�ect is a secondary distortion of the cosmic microwave
background (CMB) spectrum caused by hot intergalactic gas along the line
of sight to the surface of last scattering. The cool CMB photons undergo
inverse Compton scattering on the hot electrons, gaining on average a small
amount of energy in the process, creating an intensity decrement at low
frequencies (ν ≤ 218GHz) and an increment at high frequencies. The SZ
e�ect is the dominant source of CMB anisotropy at small angular scales.
Figure 1 displays the CMB anisotropy and the SZ component.

Current instruments are now regularly detecting and imaging clusters
at high signal-to-noise, and the next generation of instruments should be
capable of mapping fairly large portions of the sky as a means of �nding
clusters of galaxies. Several works (e.g., [3] [4] [5] [6]) have predicted the
number of clusters that could be expected in future SZ surveys and their
angular power spectrum. The survey yields are quite impressive; the next
generation of SZ instruments should be able to detect several clusters per
day.

Figure 1: Maps of the simulated thermal SZ e�ect adopted from [7]. The
left panel shows only the SZE contribution, while the right shows both the
primary and the secondary CMB anisotropy. The �eld of view is roughly
1◦ × 1◦ on both plots.

Observations of the SZE are just beginning to demonstrate their poten-
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tial. Currently commissioning SZE observations include the BIMA1 [8], the
Diabolo [9], the SuZIE2 [10], the Ryle Telescope3 [12], the OVRO4 [13], and
the CBI5. New generation bolometric and interferometric instruments are
approaching the �nal stages of development, such as the BOLOCAM6 [11],
the SZA7, the AMI8, and the AMiBA9. These instruments are anticipated
to be over an order of magnitude more sensitive and will soon begin routine
observations. The SZ instruments will continue increasing its capabilities
and performance throughout the decade, as several additional new genera-
tion SZE instruments have recently been funded. These are the APEX10, the
ACT11, the SPT12, the Planck13, and the ALMA14.

The present study aims to analyze the extent that this near-future pre-
cision technology will improve our understanding on galaxy cluster physics.
In particular we make predictions for the ALMA system. Measuring the SZ
imprint of the ICM, it is possible to map the ionized gas density distributions
and make predictions on the underlying dark matter structure.

The classical theory of cluster evolution [14] states that the clusters form
by self-similar accretion and secondary infall on a compact density pertur-
bation. The theory predicts that collisional or collisionless matter, or the
mixture of the two evolve to a stationary self-similar equilibrium within a
neighborhood of the overdense density perturbation. The infall of cluster gas
is halted by a shock wave which propagates outward from the center. The
gas density has a discontinuity at the shock, and the density is much larger
in the inner region. There are indications that this density shock has already

1An array of ten 6.1m mm-wave telescopes located at Hat Creek, CA, and operated by
the Berkeley-Illinois-Maryland-Association.

2Sunyev-Zel'dovich Infrared Experiment, a six-element 140 GHz bolometer array.
3An array of eight 13m telescopes used in interferometric mode, located in Cambridge,

England.
4An array of six 10.4m telescopes located in Owens Valley, CA, and operated by Caltech.
5Cosmic Background Imager, an array of 13 0.9m telescopes, sensitive to 3'-20'.
6A 151-element bolometer array, operated by the Caltech Submillimeter Observatory.
7Sunyaev-Zel'dovich Array, an array of eight 3.5m telescopes which will be deployed

with the existing OVRO and BIMA arrays.
8ArcMinute Micro-Kelvin Imager, an array of ten 3.7m telescopes, located in Cam-

bridge, England.
9Array for Microwave Background Anisotropy, 19 1.2m telescopes operated at 90 GHz.

10Atacama Path�nder Experiment, a 12m telescope ALMA prototype, end of 2004
11Atacama Cosmology Telescope, 6m telescope with a 1024-element bolometer array, 3

colors, planned to start running by November 2006.
12South Pole Telescope, 8m telescope with a 1000-element bolometer array, operational

by 2008.
13Planck Explorer satellite, launch planned for 2008
14Atacama Large Millimeter Array, an array of sixty four 12m telescopes, planned for

2012
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been observed around forming cluster prototypes with combined optical, ra-
dio, and X-ray analysis [15]. In principle, the existence of the discontinuity
can also be detected using the SZ e�ect.

Previous studies on cluster phyisics with an emphasis on the SZ e�ect
do not account for the anticipated cuto� in the cluster gas density pro�les.
The simplest popular discription is the �β model� [17]. The model provides
a simple �tting formula for the gas density pro�le, independent of the un-
derlying dark matter pro�le, and it is in accord with present SZ and X-ray
observations [18]. More sophisticated models derive the gas density pro�le
by assuming isotropic equilibrium between the gas and dark matter distri-
butions. The dark matter density pro�le is obtained by numerical N-body
simulations. The two groups [21] and [22] agree that the pro�le is universal
with an r−3 ringdown in the outer regions but argue on the exponent in the
inner regions between −1 or −1.5. A solution for the gas density on this
dark matter background [16] is the truncated isothermal sphere model. The
�preheated model� of [19] assumes a temperature dependent nonzero entropy
�oor in the cluster core, modifying the isotherm model. Another approach
is presented in [20] where the gas density assumes a universal self-similar
form. State-of-the-art hydrodynamic numerical simulations [7] are in accord
with the above models. The implications on the X-ray and SZ signatures re-
garding the cluster number count statistic and the angular power spectrum
are somewhat di�erent in the various models, but as of now the observation
depth and sensitivity has not reached the level to decide which model comes
closest to reality.

In this study we follow the approach of [20] for isotropic self-similar equi-
librium, but introduce a linear cuto� in the gas density distribution at a
�nite radius. For the cosmological model, we use the ΛCDM cosmology. We
approximate the angular power spectrum of the unresolved CMB anisotropy
as a white gaussian noise. We calculate the SZ surface density pro�le for the
models with and without the density cuto�, and examine if these models can
be distinguished with the future ALMA system in the noise background. For
the comparison we derive the optimal matched �lter, and analyze the signal
to noise ratio at which the distinction can be made between the two models.
We then calculate the probability distribution and the level of signi�cance
of the comparison. The score of the test is dominated by the contribution
of the region around the cuto� in the outer region. Since all other models
agree on the SZ imprint of this domain, our result for detecting cluster edges
is mostly model independent. Finally we examine the precision at which the
various parameters of the self-similar model � including the radial distance
and the �width� of the cuto�,� can be measured.
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3 The proposal for the Atacama Large Millime-
ter Array

This study o�ers a possible application to the ALMA project regarding the
observation of the gas density cuto�. Thus, it is necessary to review the
expected technical speci�cations of this instrument.

ALMA will be comprised of some sixty four 12-meter sub-millimeter qual-
ity antennas, with baselines extending from 150 m up to 10 km. Its receivers
will cover the range from ν = 70 to 900 GHz. Anticipated SZ tempera-
ture sensitivity for a ∆ts ≈ 60s integration period is between σN ≈ 100µK
and 24 mK for the compact con�guration depending on the frequency of the
detection.

We assume antennas de�ned by the request for proposals for construction
of the prototype antennas. The expected aperture e�ciency has been taken
from [26]. The receiver sensitivity is assumed to be 40K - 50K at 100GHz,
6 hν

kB
+ 4K up to 650GHz and 8 hν

kB
at 850GHz. The atmosphere is assumed

to be characterized by 1mm of precipitable water vapor, and opacities are
calculated at the various frequencies according to [27].

Generally a baseline B corresponds to a beam diameter

∆φ =
c

νB
= 2”×

( ν

100GHz

)−1
(

B

300m

)−1

(1)

The resulting temperature sensitivity for the compact con�guration (B =
150m) according to [28] is given in table 1. The left panel shows the beam
diameter and the sensitivity with integration time 60s. On the right panel
we calculated the baseline needed to have ∆φ ≤ 2” and the correspond-
ing sensitivity with the same integration time, 60s. In the last column of
the right panel we calculated the corresponding integration time, which is
needed to reduce the noise variance to 10µK. This was achieved by using
σD ∝

√
B2∆tint. This integration time is below 2 days for frequencies below

300GHz.
For the present study we will always approximate the sensitivity of the

detector with σD . 10µK at a resolution of ∆φ ≈ 2”. This assumption is
realistic for an observation with ALMA. For even larger observation times,
the detector noise can be neglected compared to the statistical �uctuations
of astrophysical origin.

The design of the ALMA system was not related to the aspect considered
in this study. It was intended to detect and study the earliest and most
distant galaxies, the epoch of the �rst light in the Universe. It will also
look deep into the dust-obscured regions where stars are born to examine
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ν ∆φ (σD)60s

[GHz] [arcsec] [mK]

35 11.79 0.1079
90 4.584 0.1871
140 2.947 0.2518
230 1.794 0.4317
345 1.196 1.007
409 1.009 1.799
650 0.6347 13.67
850 0.4853 24.46

ν B (σD)60s (∆tint)10µK

[GHz] [m] [mK] [hr]

35 884 3.747 67
90 344 0.983 31
140 221 0.547 23
230 150 0.432 31
345 150 1.007 169
409 150 1.799 539
650 150 13.67 3.11× 104

850 150 24.46 9.97× 104

Table 1: Temperature sensitivities and integration times

the details of star and planet formation. In addition to these two main
science drivers the array will make major contributions to virtually all �elds
of astronomical research.
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4 Self-similar surface density pro�les
Many high-resolution N-body simulations suggest that the dark matter den-
sity pro�le ρdm(r) is well described by a self-similar form: ρdm(r) = ρsydm(r/rs)
where ρs is the mass density normalization factor, rs is a length scale, and
ydm(x) is a non-dimensional function representing the pro�le. The density
normalization, ρs, is determined to yield mass Mvir when ρdm(r) is integrated
within the virial radius, rvir. The length scale rs is de�ned as rs = rvir/c,
where c is the concentration parameter. We calculate rvir(Mvir, z) and c ac-
cording to a spherical top hat model and an empirical �tting formula found
in the literature by equations (16) and (12) below.

The dark-matter pro�le is approximated with the following analytic form

ydm(x) =
1

xα(1 + x)3−α
(2)

where the parameter α is assumed to be 1 or 3/2 (see [21] and [23]).
The gas density pro�le can be obtained using a polytropic model in hy-

drostatic equilibrium with the dark matter background. In this case, the gas
density and temperature pro�les assume a self-similar form,

ρgas(r/rs) = ρgas(0)ygas(r/rs) (3)
Tgas(r/rs) = Tgas(0)yγ−1

gas (r/rs) (4)

where Pgas ∝ ρgasTgas ∝ ργ has been used. The hydrostatic equilibrium
equation

ρ−1
gas

dPgas

dr
= −G

M(≤ r)

r2
(5)

can be solved [24] for ygas(x) for a �xed dark matter mass distribution.

yγ−1
gas (x) = 1− 3η−1γ − 1

γ

c

m(c)

∫ x

0

du
m(u)

u2
(6)

where η is an integration constant, and m(u) is the dimensionless mass within
a distance u from the center

m(x) ≈ mdm(x) =

∫ x

0

duu2ydm(u) (7)

These integrals can be evaluated analytically [24] for the particular cases
α = 1 and α = 3/2.

The mass-temperature normalization is given by the virial theorem

η−1 =
GµmpMvir

3rvirkBTgas(0)
(8)
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Both theoretical and numerical studies assert that the gas density pro�le
traces the dark matter density pro�le in the outer region of the halo (see
[20] and references therein). Therefore, the slopes of these two pro�les are
assumed to be the same for c/2 < x < 2c. x∗ shall denote the x value where
the slopes equal. This requirement �xes the η normalization in eq. (6) and
the polytropic index γ (see [20] for details). The normalization is given by

η =
−3

γs∗
c

x∗
m(x∗)
m(c)

+ 3
γ − 1

γ

c

m(c)

∫ x∗

0

du
m(u)

u2
(9)

s∗ = −
[
α + (3− α)

x∗

1 + x∗

]
(10)

A good approximation for γ is

γ = 1.15 + 0.01(cNFW − 6.5) (11)

where the parameter cNFW is an α independent concentration parameter
de�ned below.

The concentration parameters, c and cNFW can be written in terms of the
virial mass and redshift for a given cosmological model. An empirical �tting
formula [29] is

c(Mvir, α, z) =

{
cNFW if α = 1

cNFW /1.7 if α = 1.5
(12)

cNFW =
6

1 + z

(
Mvir

1014h−1M¯

)−1/5

(13)

Speci�cally c(1015M¯, 1, 0) = 4.1 and c(1013M¯, 1, 0) = 10.4. Eq. (12)
supplies a one-to-one correspondence between c and Mvir, these constants
carry the same information about the cluster. With this identi�cation, in
the remaining of this study, we shall use c and Mvir interchangeably.

The self-similar model de�ned above does not assign a value for the gas
density normalization ρgas(0). It's value can be calculated by requiring that
the ratio of the total dark matter and gas masses' ratio within xmax attain
Ωdm/ΩB. Simulations without feedback from galaxy formation typically �nd
values for the cluster gas mass fraction that are only slightly lower than the
input global baryon fraction [32]. We shall adopt (Ωdm, ΩB) = (0.253, 0.047)
according to recent WMAP measurements. Thus

ρgas(0) =
mdm(xmax)

mgas(xmax)

ΩB

Ωdm

(14)

15



where mgas(x) is the accumulated dimensionless mass of the gas de�ned as

mgas(x) =

∫ x

0

duu2ygas(u) (15)

and mdm was de�ned similarly by (7). The value of xmax cannot be increased
without bounds, since mgas(x) and mdm(x) are unbounded for large x with
di�erent distributions. Moreover, since ydm(x) tends to zero and ygas(x)
approaches a �nite nonzero value while x → ∞, the dark matter-gas mass
fraction limx→∞ mdm(x)/mgas(x) = 0 implying that ρgas(0) = 0. Therefore
xmax = ∞ is inadequate for calculating the normalization. Nevertheless
ρgas(0) has only a mild xmax dependence for reasonably low xmax values.
Using xmax = 5c, yields a maximum error of 10% for xmax ∈ [c, 10c] (see �g.
5 below).

We calculate the virial radius, rvir, with the spherical top hat collapse
model using (Ωm, ΩΛ, h) = (0.30, 0.70, 0.70) �at universe

rvir =

[
Mvir

(4π/3)∆c(z)ρc(z)

]1/3

(16)

ρc(z) =
3H2

0

8πG
[Ωm(1 + z)3 + ΩΛ] (17)

∆c = 18π2 + 82d− 39d2 (18)

d(z) =
−ΩΛ

Ωm(1 + z)3 + ΩΛ

(19)

Instead of the concentration parameter, the observable quantity is the
angular diameter of the cluster. The angular radius corresponding to the
virial radius is

Θ =
rvir

dA(z)
= rvir

(1 + z)2

dL(z)
(20)

The luminosity distance is

dL(z) = (1 + z)
c0

H0

∫ 1

(1+z)−1

da

a2
√

Ωma−3 + ΩΛ

(21)

This can be expressed [30] with the universal �tting formula

dL(z) = (1 + z)
c0

H0

[
f(1)− f((1 + z)−1)

]
(22)

f(a) = 2
√

s3 + 1

[
1

a4
− 0.1540

s

a3
+ 0.4304

s2

a2
+ 0.19097

s3

a
+ 0.066941s4

]−1/8

(23)
s3 = ΩΛ/Ωm (24)

16



With this choice, the only free parameters remaining in the gas density,
ρgas(x), are Mvir and α.

Let us introduce a modi�cation of the density pro�le (2) by accounting
for the cuto� of the cluster on the edge. As it was pointed out above (14)
the truncation is mandatory when calculating the gas density normalization.
Let us assume that the density has a linear cuto� between radii xmax − D
and xmax + D. At xmax + D the density attains the background value. Since
this value is negligible compared to ydm(c) for realistic clusters, it will be
approximated by 0. Since the gas density pro�le traces the dark matter
pro�le, the linear density cuto� can be imposed on directly the gas density.
In what follows, the original density function (6) will be referred to as ygas0(x),
and ygas(x) shall denote the density pro�le with a cuto�.

ygas(x) = ygas0(x)W (x) (25)

where

W (x) =





1 if x < xmax −D
(xmax+D)−x

2D
if xmax + D < x < xmax −D

0 if xmax + D < x

(26)

For consistency, the ρgas(0) gas density normalization has to be recalcu-
lated from eq. (14) using the proper m(x) (eq. (7) and (15)) accordingly.
Practically ρgas(0) is altered by xmax only, the D dependance is negligible.
Thus, we recalculate ρgas(0) with (14), and will not worry about the D 6= 0
value.
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5 SZ surface brightness pro�les
The SZ surface brightness pro�le is given by

I(x) = i0g(θ)yC(x) (27)

where θ = hν
kBTCMB

is the dimensionless frequency, i0 = 2(kBT )3/(hc)2 is the
intensity scale, and yC is the Compton parameter.

g(θ) =
θ4eθ

(eθ − 1)2

(
θ
eθ + 1

eθ − 1
− 4

)
(1 + δSZE(θ, Te)) (28)

The δSZE(x, Te) term is the relativistic correction to the frequency depen-
dence. The Compton yC-parameter is de�ned as

yC(x) =

∫
ne

kBTe

mec2
0

σT dl (29)

where σT is the Thompson cross-section, ne is the electron number density,
Te is the electron temperature, kB is the Boltzmann constant, mec

2
0 is the

electron rest mass energy, and the integration is along the line of sight (i.e.
along r =

√
x2 + l2 for a given x). We calculate the electron temperature,

Te, with Te = Tgas using eq. (8), and the number density is given by

ne(x) =
ρgas(0)ygas(x)

µmp

(30)

where mp is the proton rest mass, and µ = 0.59 for an ionized H-He plasma
with 25% Helium abundance by mass.
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Figure 2: Predicted SZ surface brightness pro�les for α = 1 (left) and
α = 1.5 (right). The other parameters were Mvir = 1015M¯ and z = 0.1.
The solid curves show Y (x) pro�les with various xmax choices. The dot-
ted, dashed and dadotted curves were obtained by replacing ygas(x) with
ydm(x)ygas(x

∗)/ydm(x∗) in equation (35), with x∗ = c/2 for xmax = c and
x∗ = c for xmax > c.

Substituting (4) and (30) in (29) the SZ surface brightness pro�le (27) is
separable into a dimensionless integral with spacial dependence and a con-
stant coe�cient

I(x) = IsY (x) (31)
where

Y (x) =

∫ ∞

−∞
dl [ygas(

√
x2 + l2)]γ (32)

Is = g(θ)i0ne(0)
kBTgas(0)

mec2
0

σT rs (33)

Substituting (8) and (30) gives

Is = g(θ)i0σT
1

mec2
0

GMvir

3c
ρgas(0)η (34)
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Figure 3: The di�erence between the normalized brightness pro�les with
and without a cuto�, for various D values. The di�erence is taken be-
tween Y (x)/Y (0) pro�les with di�erent xmax and D parameters, but identical
Mvir, α, z values. α = 1.5, z = 0, xmax2 = 100 was assumed on all plots. (The
z dependence is implicit in the concentration parameter c.) The top row
uses Mvir = 1015M¯, the bottom row has Mvir = 1013M¯. The left panels
have xmax1 = c, the right panels have xmax1 = 2c. The SZ brightness pro�les
were normalized with 1/Y (0). This allows the pro�le with xmax2 = 100 to be
nonzero. Unnormalized SZ pro�les' di�erences are plotted on �g. 4.

20



Figure 4: The di�erence between SZ brightness pro�les with a cuto� at
xmax1 = c and at various xmax2. The scale on the y-axis is 10µK, which is the
typical noise power. The graphs are therefore related to the signal to noise
ratio for deciding between xmax1 and xmax2. The left plot has Mvir = 1015M¯,
and right has Mvir = 1013M¯. The α and z values are �xed at 1.5 and 0.1.
Notice that it is irrelevant to choose xmax2 to approach in�nity, since then
the corresponding Is would vanish.

The domain of the integral in Y (x) can be truncated to the maximal
radius where the density is nonzero.

Y (x) = 2

∫ √
(xmax+D)2−x2

0

dl [ygas(
√

x2 + l2)]γ (35)

Fig. 2, 3, and 4 plot the predicted SZ brightness pro�les' spacial de-
pendence with and without the cuto�. Fig. 2 depicts the Y (x) pro�le for
α = 1 and α = 1.5, and shows that a higher α leads to a smaller Y (0) value.
Unless a particular xmax cuto� is introduced, the ygas(x) and Y (x) pro�le
has a nonzero limit for large x. Various choices of xmax can be compared by
analyzing the di�erence between the associated intensity pro�les (see below).
Such di�erences between the Y (x) and I(x) pro�les are plotted on �gures 3
and 4. Note that the I(x) pro�le is obtained from Y (x) with multiplying by
the Is coe�cient. Various xmax choices generally lead to unequal Is values,
implying a nonzero di�erence between the I(x) pro�les at x = 0.

The SZE intensity I(x) given by (31) is the deviation of the intensity
spectrum from the black-body radiation.

ICMB =
2h

c2
0

ν3

eθ − 1
(36)
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The SZE intensity can be expressed conveniently as a small temperature
change of the CMB spectrum. Let us introduce the SZE temperature T (x)
increment by

I(x) =
∂ICMB

∂TCMB

T (x) (37)

Solving for the SZE temperature

T (x) = f(θ)yC(x)TCMB (38)

where f(θ) is given by

f(θ) =

(
θ
eθ + 1

eθ − 1
− 4

)
(1 + δSZE(θ, Te)) (39)

Therefore the SZE temperature pro�le assumes

T (x) = TsY (x) (40)

where
Ts = f(θ)TCMBσT

1

mec2
0

GMvir

3c
ρgas(0)η (41)

Mvir/M¯ α 100 Hz 150 Hz 200 Hz 250 Hz

1013 1 -13 -8 -2 5
1013 1.5 -19 -12 -3 7
1014 1 -75 -47 -13 26
1014 1.5 -119 -75 -20 40
1015 1 -420 -260 -73 141
1015 1.5 -688 -435 -120 233

Table 2: Calculated central SZE temperatures, T (0), in µK for various Mvir,
α, and ν values. (xmax = 5c)

Table 2. shows the calculated central T (0) values for various clusters' SZE
signatures for various detecting frequencies. Figure 5. shows the slight xmax

dependance of the central SZE temperature. The xmax dependence is implicit
in ρgas(0) (eq. (14)) and also in Y (x) (eq. (35)). The former dominates the
xmax dependence. Choosing xmax = 5c produces at most a 10% error in the
central SZE temperature compared to the value with xmax ∈ [c, 10c].
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Figure 5: The central SZE temperature T (0) when varying xmax. Both �gures
have Mvir = 1015M¯, z = 0, ν = 100 GHz, while α = 1 left and α = 1.5 right.
Observe that choosing xmax ≈ 5c for the normalization of ρgas(0) in eq. (14)
is adequate with a maximum error of 10% for xmax ∈ [c, 10c].

Observe, that the α = 1.5 dark matter pro�le yields ∝ 1.6× larger T (0)
values than the α = 1 model. We can elucidate the source of this increment
by tracking the di�erences between the two models in equations (40) and
(41). The di�erence is caused by the change in the ρgas(0)ηY (0)/c product.
Since the dark matter model with α = 1.5 is concentrated more in the central
region, the gas density and the gas temperature is expected to be higher in
the center for α = 1.5. Indeed, ρgas(0) = 8.7 · 104ρBG for α = 1.5, while it is
2.0 · 104ρBG for α = 1. The η parameter is simply proportional to the Tgas(0)
gas temperature (8), which is somewhat higher (22%) for α = 1.5. Third,
the 1/c factor further increases the di�erence by 70%. Finally, the increment
caused by variables localized to the center is smeared by Y , which accounts
for the fact that the observation measures the projection of the intensity
along the line of sight. In particular, Y (0) = 0.14 for α = 1.5 and 0.73 for
α = 1. Therefore, the resulting increase in the central SZE temperature is
60% for α = 1.5.

A given detector measures the intensity at various θ frequencies and x
radii. The SZE measurement is hampered by the secondary CMB anisotropies.
These are the unresolved thermal SZ e�ect and the Ostriker-Vishniac (OV)
e�ect. For the OV contribution we simply assume a �at band power contri-
bution of 1µK [19]. The unresolved thermal SZE contamination is strongly
non-Gaussian, and there is a signi�cant amount of uncertainty in the small-
scale power, due to unknown e�ects such as gas cooling and feedback from
star formation. It is estimated [19] that the rms power on arcminute scales
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are between 1 and 6µK. For a conservative estimate we shall assumes

σN = 10µK (42)

white Gaussian noise. Note that intensity can be converted to temperature
with eq. (37).
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6 Detecting cluster edges
The response of a detector with a given window function W(x) associated
with its angular resolution for input T (x) is

h(x) =

∫
T (x)WD(x− x′)d2x′ (43)

The window function of the detector will be approximated by a Dirac-δ,
so that the hypotheses are the temperature pro�les with no distortion. The
observation is taken over K distinct directions corresponding to the resolution
of the measurement. The measurement frequency is assumed to be a �xed
value.15

The model with a cuto� h1(x) is set uniquely in terms of the parameters
(Mvir, z, α, xmax1, D). Since h2(x) is the hypothesis without a cuto�, it seems
plausible to use the same de�nition with the distinction xmax2 = ∞. However,
the density is unnormalizable in this case. For these reasons, instead of this
choice, we shall adopt the following de�nitions of h2(x).

1. The central gas density of h2(x) is chosen to equal the central density
of h1(x). Equivalently, the T (0) temperatures are assumed to be the
same for the two hypotheses.

2. The h2(x) model is chosen to equal the self similar model within a radius
xmax2 where the gas density drops to the background barion density
value for the given redshift. This value is between 4.5 ≤ xmax2 ≤ 5.5
for typical clusters with virial mass 1013M¯ ≤ Mvir ≤ 1015M¯, at
any redshift and α (either 1 or 1.5). The gas density normalization
is calculated consistently with eq. (14). The pro�le outside xmax2 is
truncated with D = 0. Note, that there is a 5% variance in the central
temperature with this de�nition (see �g. 5.). The central temperatures
of h1 and h2 are di�erent in this case, the deviation is around 10% for
xmax1 = c.

These h2(x) de�nitions will be referred to as Model I and Model II, re-
spectively. Although Model II has the advantage of being a closed and consis-
tent theoretical description where ρgas(0) and thus Ts is derived from theory,
Model I is favorable for practical reasons. The SZ temperature decrement
scale Ts can be �tted without constraining the cluster barion mass fraction,
which can vary among di�erent observations. Similarly, the concentration
parameter c can be set according to the observation, without strictly ap-
plying the c(Mvir, z) relation. For a comparison, the following statements

15In the numerical calculations we shall generally use 100Hz.
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describe Model I and II.

Model I

• h1(x) is described by parameters (Mvir, z, α, Ts, c, xmax1, D). The cen-
teral gas density ρgas(0) is irrelevant for the comparison of the SZ pro-
�les, but can be calculated from these parameters if needed.

• h2(x) is described by parameters (Mvir, z, α, Ts, c). The integration
bound xmax2 in eq. (35) is taken to approach ∞. Practically, xmax2 =
10c is an adequate choice.

• The corresponding parameters of h1(x) and h2(x) need not equal, they
are �tted independently for a mock observation.

• For a given observation, the parameters Mvir, c, and Ts are expected
to approximately satisfy eq. (12) of c(Mvir, z), eq. (41) for Ts, and eq.
(14) for ρgas(0). The deviation from these values are assumed to be
caused by statistical rather than systematic errors. Our �ducial model
will have input signals with these values.

• Mvir and z are not free parameters, but are determined from a compari-
son with X-ray and gravitational lensing and spectroscopy observations.

Model II

• h1(x) is described by parameters (Mvir, z, α, xmax1, D). The parameters
ρgas(0), Ts, and c are derived from theory and are not allowed to deviate
from those values.

• h2(x) is described by parameters (Mvir, z, α). The cuto� distance xmax2

is calculated to have ρgas(xmax2) = ρBG.

• Mvir and z are not free parameters, as in Model I.

The expected output for the SZ intensity input of a cluster with or without
a cuto�, h1(x) or h2(x), can be calculated from eq. (31). Therefore the
measured output is to be compared with these two signal hypotheses. The
detector �sees� the cuto� if it can make a signi�cant decision between the
two choices.

26



6.1 Heuristic S/N calculation
We shall now derive a simple estimate for the signal to noise ratio for choosing
between pro�les with and without a cuto�. For this estimate, the distinction
between Model I and II need not be utilized. The cuto� radius is taken
xmax1 = c and xmax2 = ∞ respectively. The e�ective signal to noise ratio is
calculated by comparing the ∆h(x) = h2(x)−h1(x) power to the noise power
in the regular two-dimensional angular space.

The best decision rule for using only a single direction is obtained when
only the x radius corresponding to the maximum of h2(x)− h1(x) is used.

(
S

N

)2

K=1

=
maxx(h2(x)− h1(x))2

σ2
N

(44)

=

(
T (0)

σN

)2
maxx(Y2(x)− Y1(x))2

Y (0)2
(45)

=

(
T (0)

σN

)2
(Y2(xmax)− Y1(xmax))

2

Y (0)2
(46)

A typical value for a massive cluster Mvir = 1015M¯, α = 1.5 and z = 0.3 is
(Y2(xmax)− Y1(xmax))

2

Y (0)2
= 6.1 · 10−4 (47)

T (0)2/σ2
N = 5900 (48)

implying that S/N ≈ 1.9 for the best pixel of the survey. These values
increase when increasing z.

Now if ∆φ denotes the smallest angle corresponding to the maximum
resolution of the detection, the number of pixels the cluster covers is approx-
imately

K =

(
Θ

c∆φ

)2

(49)

Since Θ = 8.1′ for z = 0.3 for a massive cluster, we expect K = 1.8 · 104

pixels for ∆φ = 2” of ALMA.
For an estimate,

S

N
≈
√

K

(
S

N

)

K=1

(50)

Explicitly,
S

N
≈ Θ

c∆φ

T (xmax2)

σN

(51)

This approximation presumes two things: 1. the signal strength (i.e. the dif-
ference between the pro�les with and without a cuto�) in the relevant pixels
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can be estimated with the maximal signal strength, and 2. the number of
such pixels is proportional to the area of the cluster within rs = 1 perpendic-
ular to the line of sight. The radius rs = 1 (i.e. r = rvir/c) is special in the
sense that the dark matter overdensity is ∆c(z). It is to be emphasized that
eq. (50) is only a rough estimate, since the deviation of the two pro�les are
really sensitive to the region near the edge. Nevertheless, we approximate
the area of this ring around the edge with the area within rs = 1.

For a massive cluster Mvir = 1015M¯ at z = 0.3 the detection of the edge
at xmax = c with ALMA has a signal to noise ratio S/N ≈ 250. If α = 1
for the same Mvir and z values, the parameter c is 1.7× larger, T (c) is about
the same as α = 1.5 (while Θ and ∆φ are naturally invariant), implying that
signal to noise ratio decreases by 70%, which is still S/N ≈ 150. Larger z
values decrease Θ but increase T (c) in a way that there is a minimum at
z = 0.28. Smaller Mvir has a larger c but a smaller Θ and T (c), so that S/N
decreases with Mvir. The edge is most visible for clusters that are closeby
z ¿ 0.28 or faraway z À 0.28, and that have a large Mvir and α.

To improve this estimate we should acknowledge that the typical one-
pixel signal strength in eq. (50) is not the maximum given by (44), but the
average of the various 1 pixel signal to noise ratio over the cluster. This leads
to the following approximation

(
S

N

)2

K=1

=

(
T (0)

σN

)2
∫ x

0
dx′ 2πx′(Y2(x

′)− Y1(x
′))2

πx2Y (0)2
(52)

The average is now taken over a radius range x′ ∈ [0, x]. Let us label the x
dependent part by H(x), so that (S/N)2

K=1 = (T (0)/σN)2H(x). Obviously,
the signal to noise ratio depends on the radius range where the surface bright-
ness is measured. Figure 6 shows this dependence for a cluster with α = 1.5
and Mvir = 1015M¯ (left) and Mvir = 1013M¯ (right). Substituting the x
value of the maximum of H(x), yields maxx H(x) = 3.0 · 10−4 and 1.2 · 10−5

respectively. Using α = 1 similarly yields 8.2 · 10−4 and 2.5 · 10−5. Therefore,
eq. (52) leads to approximately the same S/N ratio as the original eq. (44).

Interestingly, H(x) does have a maximum, indicating that the consider-
ation of the pixels beyond the maximum might not increase the precision of
the �t, unless the increase in

√
K compensates the decrement. In the follow-

ing section we will prove that all pixels have to be considered for an optimal
edge detection.
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Figure 6: H(x) is plotted with parameters Mvir = 1015M¯ (left), 1013M¯
(right), and xmax2 = 100, xmax1 = c, z = 0.3, α = 3/2 for both cases.

These estimates all indicate, that the S/N ratio will be signi�cant for
regular clusters for an observation with ALMA.

6.2 S/N with the optimal �lter
A measurement of the function y(x) in xk distinct directions yields a discrete
sample yk where k ∈ [1, K].

yk =

∫
d2x y(x)WD(x− xk) (53)

The set {yk} is an element of a K-dimensional vector space and will be
denoted by y. Similarly, let h1 and h2 denote the discrete sample of the
hypotheses functions h1(x) and h2(x). In particular, y denotes the measured
SZE intensity pro�le, whereas h1 and h2 denote the calculated brightness
pro�les with and without a cuto� (using eq. (31) with xmax1 6= ∞ and
xmax2 = ∞ respectively). The vectors h1 and h2 depend on the parameters
describing the cluster and the cuto�. We now derive the signal to noise ratio
of the test for a given �xed choice of parameters.

If the real signal arriving to the detector was s(x), then the detector
measures the data

y = s + n (54)
where n is the probability variable corresponding to the noise.

Let us approximate the window function with a Dirac-δ, i.e. W (x) =
δD(x), and let us assume white Gaussian noise of variance σN . In this case,
the probability of detecting y, given that the incoming signal is s, is the
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following
P (y | s) =

1

(2π)K/2(σN)K
exp

[
−(y − s)2

2σ2
N

]
(55)

where the notion of the K-dimensional vectors' di�erences and scalar product
was used.

(y − s)2 =
K∑

k=1

(yk − sk)
2 (56)

The detection probability involves P (s |y), which can be obtained us-
ing the a priori probabilities P (s) and the Bayes-theorem for conditional
probabilities. Most common decision rules, such as the maximum posteriori,
the Neyman-Pearson, or the minimax decisions involve constraints on the
likelihood ratio.

L(y) =
P (y |h1)

P (y |h2)
(57)

Substituting (55) in (57) the log-likelihood becomes

ln L(y) = − 1

σ2
N

(
y − h1 + h2

2

)
· (h2 − h1) (58)

= − 1

σ2
N

(h2 − h1) · (y − h2)− 1

2σ2
N

(h2 − h1)
2 (59)

The likelihood depends on the y − h2 component along h2 − h1. The term
h2 − h1 is referred to as the matched �lter.

The decision rule can be outlined as follows:

1. Obtain the hypothesis vectors h1 and h2 from h1(x), h2(x) with x = xk

de�ning the particular directions of the measurement. The parameters
implicit in the functions h1(x) and h2(x) are given prior to the mea-
surement.

2. Set up the desired decision margin for the likelihood ratio. For example,
a natural choice is to choose the margin at L(y) = 0.

3. Obtain y from the measurement.

4. Evaluate L(y) from eq. (59), and choose the decision in favor of h1 if
this value is greater than the bound given in 2. above.

Since the noise distribution P (n) is spherically symmetric in the K-
dimensional vector space, it has the same power σ2

N along any basis. This
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infers that the noise power for the likelihood detection rule is the noise power
for a single bin, i.e.

N2 = σ2
N (60)

Thus increasing the sample size increases the signal power, but leaves the
relevant noise contribution the same.

The signal power is

S2 = (h2 − h1)
2 =

∑

k

(h2,k − h1,k)
2 =

1

∆x2

∫
d2x ∆h(x)2 (61)

where ∆h(x) = h2(x)−h1(x) and ∆x2 denotes the area enclosed by the neigh-
boring xk points. We have assumed that the resolution of the measurement
is �ne enough to approximate the sum with the integral16,17.

The signal to noise ratio from eq. (60) and (61)

S2

N2
=

(h2 − h1)
2

σ2
N

(62)

For a given detector with angular resolution ∆φ and a cluster of apparent
angular virial radius Θ the ∆x uncertainty is c∆φ/Θ. Substituting eq. (61)
in (62) and taking the square root yields

S

N
=

Θ

∆φcσN

√∫
dx2[h2(x)− h1(x)]2 (63)

We evaluate eq. (63) for Model I and Model II below.

6.2.1 Model I
Here we evaluate an approximation to the signal to noise ratio for Model
I. The signal to noise ratio is calculable with eq. (63) if the parameters
(Mvir, z, α, Ts, c, xmax, D) are given for h1(x) and (Mvir, z, α, Ts, c) for h2(x).
We choose realistic parameters, which are substituted for h1(x) to generate
the �ducial model. For this section, the parameters used for both hypotheses
are assumed to equal the correct values. This is only an approximation,
nevertheless we anticipate the di�erence in Ts and c of h2(x) and h1(x) will

16The ∆h peak will be rounded o� for �nite resolutions (�g. ??) leading to
a decreased signal power value!

17The integral domain is approximated by a plane, since typically Θ ¿ 1◦.
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be su�ciently small for this assumption to be reasonable. The general case
with unequal parameters for h1 and h2 will be discussed in section 6.3.

S

N
=

Θ(Mvir, z)

c(Mvir, z)∆φ

Ts

σN

√∫
dx2[Y2(x)− Y1(x)]2 (64)

Mvir z α Θ c Ts T (0) xmax2 xmax D S/N S/N
[M¯] [′] [−µK] [−µK] [c] [c] [c] I II
1013 0.3 1 1.8 7.9 18 22 4.3 1 0.01 0.53 0.71
1013 0.3 1.5 1.7 4.6 16 27 4.4 1 0.01 0.56 0.77
1014 0.3 1 3.8 5.0 97 130 4.9 1 0.01 16 17
1014 0.3 1.5 3.8 2.9 1100 160 5.0 1 0.01 16 19
1015 0.3 1 8.1 3.1 560 780 5.5 1 0.01 470 440
1015 0.3 1.5 8.1 1.8 7000 910 5.6 1 0.01 480 470

Table 3: Typical cluster parameters and S/N ratios for detecting the edge

We evaluated eq. (64) for various (Mvir, z, α, Ts, c, xmax, D). The results
are listed in table 3 and plotted on �g. 7. The concentration parameter c
and the angular radius Θ were chosen in accord with eq. (12) and (20) in
a particular cosmology. Notice, that the signal to noise ratio obtained here
equals the result of the heuristic calculation eq. (50) with the average one-
pixel signal to noise eq. (52). Now, the result was obtained from eq. (62),
which shows clearly that all pixels of the survey has to be considered, even
though the low power pixels reduce the one-pixel average.

Table 3 gives a list of the signal to noise ratios for the typical cases. The
variation caused by changing xmax, D, and z are plotted on �g. 7. The
main feature is that the S/N quickly increases with Mvir but is practically
invariant for di�erent α. The �gures show that S/N decreases with xmax,
it is nearly constant when changing D, and it has a minimum in terms of
z. The last two observations are slightly counterintuitive: cluster edges are
equally visible for smeared edges, and cluster edges are more visible for the
farthest clusters even though they are smaller.

The former can be explained with recalling the de�nition of the cuto�.
Increasing the D parameter does not change the total cluster SZ intensity. If
the cuto� shape is known exactly prior to the observation, as it is assumed in
this section, increasing D (while �xing Ts) does not come closer on average
to the pro�le without a cuto�.

To explain the second peculiarity, the S/N increase with z, we plotted
the z dependence of the relevant factors on �g. 8. Although the angular
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radius Θ decreases (bottom right), the central temperature T (0) (top right)
and the concentration parameter (bottom left) reciprocal 1/c increases. Note
that eq. (64) uses the temperature scale Ts = T (0)/Y (0) (top left) instead
of T (0), but this also increases with z. The increasing terms dominate for
large redshifts. In other words, the faraway clusters are more intense and
have a higher contrast, which makes the edge visible even though the cluster
appears smaller. For even larger redshifts, the signal to noise ratio is expected
to have a cuto�, since then the observation window function can no longer
be approximated by a Dirac-δ.

Figure 7: The signal to noise ratio for various cluster masses as a function of
xmax (top left), D (top right), and z (bottom center). Each curve has only one
parameter changing, the other �xed parameters correspond to those listed in
the �rst six lines of table 3. The solid lines trace α = 1.5, the dotted lines
show α = 1. The signal to noise ratio is mostly independent of α and D, it
increases with Mvir and z and decreases with xmax.
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Figure 8: The parameters Ts/mK (top left), T (0)/mK (top right), c (bottom
left), and Θ (bottom right) for various cluster masses and α as a function
of redshift. Each curve has only one parameter changing, the other �xed
parameters correspond to those listed in the �rst six lines of table 3. The
solid lines trace α = 1.5, the dotted lines show α = 1. The red curves have
1013M¯, the blue curves have 1014M¯, and the green curves has 1015M¯
virial mass. The Θ angular radii are independent of α, so the dotted and
solid curves completely overlap.

This cuto� is not depicted on the graphs, it is anticipated to dominate when
Θ ≈ ∆φ. For the ΛCDM cosmological model the angular radii of clusters
does not decrease to zero, it approaches �nite values: limz→∞ Θ(z) = 10.4”,
22.4”, or 48.4” for clusters with low, medium, or large mass. Therefore, the
∆φ = 2” ALMA resolution is �ne enough to see cluster edges at arbitrary
redshifts.

In conclusion, medium to large mass clusters' edges should be clearly
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observable with ALMA, as long as the edge is located near the virial radius.
If the density cuto� is farther in the outer region, the edge will only be
observed for the large mass clusters with M > 1014Mvir. The detection will
be independent of α, z, and D.

6.2.2 Model II
For Model II, the Ts temperature is obtained from xmax, which is unequal for
the two hypotheses. From eq. (63) we get

S

N
=

Θ(Mvir, z)

c(Mvir, z)∆φ

√∫
dx2

[
Ts2Y2(x)− Ts1Y1(x)

σN

]2

(65)

Eqs. (64) and (65) corresponding to Model I and II can be compared
with �gs. 3 and 4, which plot the integrand of the two cases.

Table 3. compares the signal to noise ratio results for Model I and II.
The Ts2 value for xmax2 was recalculated to substitute in eq. (65). The
two models lead to approximately equal S/N detection ratios. This is not
surprising since the parameter sets adopted in table 3, correspond to the
�ducial model in accord with the relationships c(Mvir, z, α) and Θ(Mvir, z)
(eqs. (12) and (20)). Model I and II will only be di�erent, if there is a
signi�cant variance in the parameters around their calculated values.

Assuming that the noise is uncorrelated and Gaussian for di�erent fre-
quencies, measuring at many di�erent frequencies the signal to noise ratio
can be substantially higher.

6.3 The random distribution of S/N
One di�culty with the decision rule and signal to noise ratio discussed above
is that the parameters are unknown prior to the measurement. Assume
that the original signal (i.e. without noise) is h1 with parameter p. The
measurement

y = h1(p) + n (66)
can be used to give an estimate of p. Denote the estimated parameter18 of h1

by p1 and the estimated parameter of h2 by p2. Once the parameters have
been obtained, h1(p1) and h2(p2) can be �xed at the corresponding values.

18The least squares �t method for obtaining the parameters is relevant if the apriori
distribution in the parameter space is assumed to be uniform.
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Then the decision rule for �xed parameters can be used.

ln L(y) = − 1

σ2
N

(
y − h1(p1) + h2(p2)

2

)
· (h2(p2)− h1(p1)) (67)

If the apriori probabilities of the parameters are uniform, then the likelihood
margin can be chosen independent of y. If additionally, the apriori probabil-
ities of the h1(p1) and h2(p2) are equal, then the likelihood margin can be
chosen at L(y) = 0. 19

Since p1 is obtained by minimizing (y−h1(p1))
2, the distribution of h1(p1)

from (66) is
h1(p1) = h1(p) + ∆1 (68)

where p is the real parameter of the signal without the noise and ∆1 is approx-
imately a Gaussian random variable on the manifold H1 = {h1(p1) | p1 arbitrary}.
∆1 has variance

√
dim H1σN .

Similarly, p2 is obtained by minimizing (y − h2(p2))
2. The distribution

of h2(p2) is
h2(p2) = h2(p

′) + ∆2 (69)
where p′ is the parameter value at which (h1(p) − h2(p

′))2 is minimal. ∆2

is de�ned by eq. (69). It can be shown that it is approximately a Gaussian
random variable20 on the manifold H2 = {h2(p2) | p2 arbitrary}, with vari-
ance

√
dim H2σN . Note that ∆1 and ∆2 is strongly correlated since both

values are derived from the measurement y.
The signal power

S2 = (h2 − h1)
2 (70)

is therefore a random variable. Let us de�ne the empirical, most probable21
and expected signal powers by

S2
emp = (h2(p2)− h1(p1))

2 (71)
S2

0 = (h2(p
′)− h1(p))2 = min

p2

(h2(p2)− h1(p))2 (72)

S2
exp = 〈S2

emp〉 (73)
19An equivalent realization of the decision process from a di�erent perspective is the

following. Take the sets H1 = {h1(p1) ∈ RK | p1 arbitrary} and H2 = {h2(p2) ∈
RK | p2 arbitrary} which are manifolds in the K-dimensional manifolds. Take the set
M = {z ∈ RK |L(y, p1, p2) = κ; with p1 and p2 arbitrary}. M is a K − 1=dimensional
manifold. This separates the K-dimensional vector space into two disjoint regions R1 and
R2. Now i� the measurement y is in R1, the decision is made in favor of h1.

20The approximation is valid if H2 is nearly a linear subspace in RK , i.e. its curvature
is much less than the uncertainty

√
dim H2σN .

21The estimated parameters have a Gaussian distribution around p and p′. The term
�most probable� refers to the parameter distribution not the signal power distribution.
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The expected signal power can be written in terms of S0 using eq. (68)
and (69)

S2
exp = 〈(h2(p)− h1(p

′) + ∆2 −∆1)
2〉 = S2

0 + 〈(∆2 −∆1)
2〉 (74)

= S2
0 + 〈∆2

2〉+ 〈∆2
1〉 − 2〈∆1∆2〉 (75)

= S2
0 + (dim H1 + dim H2)σ

2
N − 2〈∆1∆2〉 (76)

= S2
0 + 2σ2

N − 2cos(φ)2σ2
N (77)

where in the last line we have assumed that H1 and H2 are one dimensional
and the scalar product of the corresponding normal basis vectors is cos(φ).
This term can be obtained, for given h1 and h2 hypothesis functions by

cos(φ)2 =

(
dh1(p)

dp
· dh2(p

′)
dp′

)2

/

(
dh1(p)

dp

)2 (
dh2(p

′)
dp′

)2

(78)

In general for any (h1,h2) we have

S2
0 ≤ S2

exp ≤ S2
0 + (dim H1 + dim H2)σ

2
N (79)

The noise power for choosing between h1 and h2 (with an arbitrary p1

or p2) is the variance of the measurement along h2(p2) − h1(p1), since the
likelihood ratio (67) depends on only this component. Therefore

N2 = 〈
[

h2(p2)− h1(p1)

||h2(p2)− h1(p1)|| · (y − h1(p1))

]2

〉 (80)

= σ2
N + 〈

[
h2(p2)− h1(p1)

||h2(p2)− h1(p1)|| ·∆1

]2

〉 (81)

The �rst term is the statistical error, whereas the second term describes the
systematic error resulting from the uncertain estimation of the parameters.
For large signal to noise ratios this can be approximated to lowest order in
∆1.

N2 = σ2
N + 〈

[
h2(p

′)− h1(p)

||h2(p′)− h1(p)|| ·∆1

]2

〉 (82)

= σ2
N + 〈(cos θ)2〉σ2

N (83)

where θ is the angle between the vector h2(p
′)− h1(p) and h1(p1)− h1(p).

In general for any (h1,h2)

σ2
N ≤ N2 ≤ 2σ2

N (84)
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In particular for the SZE brightness hypotheses, H2 ⊂ H1, with H1 having
two additional parameters. In this case, it can be shown that 〈(cos θ)2〉 ≈ 1/3
independent of p.22 Therefore

N2 =
4

3
σ2

N (85)

Although the expected signal to noise ratio can be calculated explicitly
for a given parameter choice using eq. (77) and (85), it is useful to de�ne
its the theoretical bounds independent of the given form of the hypotheses.
Comparing eq. (79) and (84), we get

S2
0

2σ2
N

≤ S2
exp

N2
≤ S2

0

σ2
N

+ dim H1 + dim H2 (86)

where S0 is given by eq. (72). The high bound is approached when H2 tends
to be parallel to H1, the low bound is approached when H2 is orthogonal to
H1 near H1(p) and H2(p

′).
For the most general case considered in this paper, h1 depends on pa-

rameters (Mvir, z, α, Ts, c, xmax, D) and h2 depends on (Mvir, z, α, Ts, c). Since
Mvir, z, and α is assumed to be �xed, only 4 and 2 parameters are free in the
two cases, respectively. Therefore the additive factors of eq. (86) are simply
dim H1 + dim H2 = 6. Using (84) we get

3

4

S2
0

σ2
N

≤ S2
exp

N2
≤ 3

4

S2
0

σ2
N

+ 4.5 (87)

For a conservative estimate we shall use the low bound. Substituting S0 from
its de�nition, eq. (72)

S2
exp

N2
=

3

4σ2
N

min
p2

[h2(p2)− h1(p)]2 (88)

This should be compared with eq. (62) describing the signal to noise ratio
for �xed parameter values. The di�erence is the 3/4 factor and the minp2

function over the p2 parameter space. If the parameters describing the cluster
are p = (Mvir, z, α, Ts, c, xmax, D) then the best �tting h2 hypothesis will have
parameters p′ = (Mvir, z, α′, T ′

s, c
′) generally di�erent from the true values.

The result (88) can be written in terms of the original continuous func-
tions h1(x) and h2(x). For a given detector with angular resolution ∆φ and

22The reason this is not an exact equality stems from the fact that H2 is not a complete
linear subspace. It is curved and is constrained (0 < D < xmax).
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a cluster of apparent virial radius Θ the smallest detectable length scale is
∆x = c∆φ/Θ. Converting the sum to an integral,

S2
exp

N2
=

3

4∆x2σ2
N

min
p2

∫
dx2[h2(x, p2)− h1(x, p)]2 (89)

=
3Θ2

4∆φ2c2σ2
N

min
p2

∫
dx2[h2(x, p2)− h1(x, p)]2 (90)

Taking the square root of the equation

Sexp

N
=

√
3

2

Θ

∆φcσN

min
p2

√∫
dx2[h2(x, p2)− h1(x, p)]2 (91)

Eq. (91) measures the probability that the edge of the cluster is observ-
able. Again, the angular radius Θ and the concentration parameter c can
be obtained theoretically for given Mvir and z in a particular cosmology by
eq. (12) and (20). Eq. (91) can be calculated for a given parameter set,
substituting eq. (31) brightness pro�les for h1(x, p) and h2(x, p2).23

23Eq. (31) describes the pro�le without an edge, (i.e. h2(x, p2)) when taking xmax À c
and D = 0.
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Figure 9: The p2 = (Ts2, c2) parameter dependence of the S/N ratio for de-
tecting the edge for (M, z, α) = (1013M¯, 0.3, 1.5) and 6 choices for (xmax, D).



Figure 10: The p2 = (Ts2, c2) parameter dependence of the S/N ratio for de-
tecting the edge for (M, z, α) = (1014M¯, 0.3, 1.5) and 6 choices for (xmax, D).
Notice the multiple minima on the top panels.



Figure 11: The p2 = (Ts2, c2) parameter dependence of the S/N ratio for de-
tecting the edge for (M, z, α) = (1015M¯, 0.3, 1.5) and 6 choices for (xmax, D).

Figs. 9, 10, and 11 show the fractional deviation of the empirical signal



to noise ratio as compared to the �ducial value in Model I for various p2

parameters. The best �tting p2 parameter is at the minimum points. The√
3/2 factor decrease because of the increase in the average noise power is

not plotted for clearity. Thus, the plots assume the value 1 at the �ducial
parameters. The numerical result presented in the last section on table 3 and
�g. 7 considered h2 parameter values that were equal to the corresponding
h1 parameter values. Figs. 9, 10, and 11 use the �ducial model with p =
(Mvir, z, α, c, Ts, xmax, D with (z = 0.3, α = 1.5) and 18 di�erent choices
for (Mvir, xmax, D). The (c, Ts) �ducial values were calculated with eqs. (12)
and (41). The p2 parameters had the same (Mvir, z, α) but (Ts, c) were varied
relative to the �ducial values. The signal to noise results listed in the previous
section (table 3 and �g. 7) are true within a factor of 0.95 × √

3/2, 0.9 ×√
3/2, 0.5×√3/2 for Mvir = 1013M¯, 1014M¯, 1015M¯ respectively. The the

edge detection probabilities remain signi�cant for M = 1015Mvir but become
marginal for mid size clusters. The most interesting feature shown on �gs. 9-
10 is that the best �tting parameter values can deviate greatly o� the �ducial
parameters. In addition, the S/N of particular clusters have saddle points
and multiple local minima in terms of the p2 parameters. This is the case
for Mvir = 1014M¯, where the local minimum near p2 = p is not global, as
the global minimum (T ′

s, c
′) is at a much larger SZ temperature and a much

smaller concentration.

6.3.1 Locating the minimum � obtaining p′

Finding the minimum value in H2 parameter space in general can be com-
putationally tedious. However, as 10 panels of �gs. 9 and 10 display, the
numerical value obtained naively by

p′(0) = (α′, T ′
s, c

′) = (α, Ts, c) (92)

is a fair zeroth approximation in most cases.24 A better approximation can
be obtained by expanding [h2(p2)−h1(p)]2 to second order around p′(0) and
�nding its minimum in terms of p2.

(h2(p
′)− h1(p))2 ≈(h2 − h1)

2 + 2(∂kh2) · (h2 − h1)xk+

+ [(∂jh2) · (∂kh2) + ∂j∂kh2 · (h2 − h1)]xjxk (93)

where xj = p′(1) − p′(0) and

∂jh2 =
∂ h2(p2)

∂p2j

(94)

24The α parameter will not be varied, α′ = α is assumed throughout this study.
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On the RHS it is assumed that h2 and its derivatives are evaluated at the
naive value p′(0). Let us denote the quadratic coe�cient by

Mkj = (∂kh2) · (∂jh2) + (h2 − h1(p)) · ∂k∂jh2 (95)

Since p′ denotes the minimum value, the xk derivative of eq. (93) must vanish

∂

∂xk

(h2(p
′)− h1(p))2 ≈ 2(∂kh2) · (h2 − h1) + 2Mkjxj = 0 (96)

Since xj = p′(1) − p′(0), the solution of this equation gives the next approxi-
mation of p′. Eq. (96) is solved by inverting the coe�cient matrix. Thus

p
′(1)
k = p

′(0)
k −M−1

kj (∂jh2) · (h2 − h1(p)) (97)

p
′(1)
k is the improved approximation of the kth parameter of p′. Note that the

Is-dependence of the hypotheses is linear, implying ∂Tsh2(p2) = h2(p2, Ts =
1) and ∂2

Ts
h2(p2) = 0 for all p2. The α and c parameter derivatives are to be

calculated numerically using eq. (31). This way, �nding the minimum in eq.
(88) is simpli�ed to evaluating parameter derivatives of the h2 function at
only p′(0).

Figs. 9, 10, and 11 show how the best �tting p′ parameters are related to
the naive choice p. The S/N function has a minimum at p′. Finding the crit-
ical point with eq. (97) yields the correct global minimum for (Mvir, z, α) =
(1013M¯, 0.3, 1.5) for any (xmax, D) and (1014M¯, 0.3, 1.5) for any (xmax, D)
unless xmax ≈ c. However, for (Mvir, z, α, xmax) ≈ (1014M¯, 0.3, 1.5, c) there
are multiple local minima and saddle points. The p′ = p′(1) approximation of
eq. (97) yields the local minima in the vicinity, which is not the global min-
imum. For (Mvir, z, α) ≈ (1015M¯, 0.3, 1.5) and arbitrary (xmax, D), the p′(1)

value corresponds to the saddle point. Again, the p′ = p′(1) approximation
of eq. (97) breaks down.

The saddle points can be identi�ed by calculating det Mi,j

det Mij(p2)
> 0 i� p2 is at a local minimum or maximum
< 0 i� p2 is at a saddle point (98)

since Mij is a 2×2 matrix and it is well-de�ned everywhere in the parameter
space. The saddle point can be eluded if det M is calculated and a step is
made towards p′(1) only if det M > 0. If it is negative, then a step is made
�downhill� along the negative gradient −2(∂kh2) · (h2 − h1).

Repeating eq. (97) or the downhill steps locates the local minimum near
the �ducial parameter value p. Figs. 9, 10, and 11 indicate that this algo-
rithm leads to the correct p′ value for the 16 of the 18 cases considered on

44



the plots. Only the �ducial parameters p = (Mvir, z, α) ≈ (1014M¯, 0.3, 1.5),
with (xmax, D) = (c, 0.01c) or (c, 0.5c) have non-global minimum in the close
neighborhood of p. In this case, the minimum can be obtained with a manual
input of (T

′(0)
s , c′(0)) = (2Ts, 0.2c), thereby eluding the local minimum.

45



7 Parameter estimation
In the previous section, we have examined the signal to noise ratio for the
hypothesis test. The primary aim of the test was to make a distinction
between the possibilities, that the cluster does or does not have an edge.
Another problem is to examine the precision of the parameter estimation of
h1 itself. We calculate the uncertainty of the parameter estimation with the
Fisher matrix.

In this section we assume that the real signal is h1, with associated pi

parameters. Now let us suppose that a signal y arrives, and with no prior
information, a parameter p1 is to be chosen that best describes the data. Due
to random noise, the measurement yields a parameter estimator with some
uncertainty. The parameter estimator can be obtained with the maximum
likelihood test. The likelihood function is

L(y, p) = P (y |h1(p)) =
1√
2π

exp

(
− [y − h1(p)]2

2σ2
N

)
(99)

and the log likelihood

ln L(y, p) = − [y − h1(p)]2

2σ2
N

(100)

The parameters are chosen to maximize L(y, p), or equivalently to apply
the least squares �t. The quantity

S2 = [h1(p1)− h1(p)]2 (101)

has a χ2 distribution in terms of h1(p1). Taking the noise power to be the
noise in a single bin, N2 = σ2

N , the false signal to noise

S

N
=

√
[h1(p1)− h1(p)]2

σN

(102)

Eq. (102) is closely related to the χ-statistic that the parameter estimator
is p1 instead of p, the true value. Given a p true parameter set, the region
within 2σ con�dence (95%) for example is the set {p1 ∈ H1 |S/N < 2}.
Thereby evaluating eq. (102), the precision of the parameter estimation can
be readily read o�. Figures 12, 13, and 14 depict this precision for various
p true values. The contour plots have p1 = (Mvir, z, α, T1, c1, xmax1, D1) with
(x(max1), D1) varied, while all other three parameters are �xed at the true
value.
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Figure 12: The parameter dependence χ-contours for (M, z, α) =
(1013M¯, 0.3, 1.5) and 6 choices for (xmax, D). The top left corners, where
D > xmax, were not calculated.



Figure 13: The parameter dependence χ-contours for (M, z, α) =
(1014M¯, 0.3, 1.5) and 6 choices for (xmax, D). The top left corners, where
D > xmax, were not calculated.



Figure 14: The parameter dependence χ-contours for (M, z, α) =
(1015M¯, 0.3, 1.5) and 6 choices for (xmax, D).
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The Fisher information matrix is

IF (p) = −
〈

∂2 ln L(y, p)

∂pi∂pj

〉

y

=
1

σ2
N

∂h1

∂pi

· ∂h1

∂pj

(103)

The �nite sum can be approximated with the integral formula for a sen-
sitive observation.

IF (p) =

(
Θ

c∆φ

)2 ∫ xmax+D

0

∂h1(x, p)

∂pj

∂h1(x, p)

∂pj

xdx (104)

Assuming that the likelihood distribution is Gaussian near the peak like-
lihood, we can use con�dence limits for Gaussian statistics (i.e., χ2) to obtain
68% and 95% con�dence regions.

The minimum expected variance is related to the Fisher matrix with the
Cramer-Rao bound

(∆pj)
2 ≥ (I−1

F )jj (105)
where equality holds if the distribution is well approximated with a Gaussian
distribution.

Tables 5 and 4 show the 68% and 95% signi�cance uncertainties for Model
I and II as calculated from the Fisher matrix. The calculations indicate
that the uncertainties are nearly the same for Model I and II regarding
xmax and D. The Fisher matrix itself is decoupled in the corresponding
subspaces, as the (xmax, Ts), (xmax, c), (D, Ts), (D, c) components are neg-
ligible compared to the diagonal elements. The variance in the parameter
estimators are (∆c/c, ∆Ts/Ts, ∆xmax/xmax, ∆D/c) = (3%, 7%, 3%, 13%) for
(Mvir, z, α, c, T, xmax, D) = (1014M¯, 0.3, 1.5, 5, 0.1mK, c, 0.01c). Therefore c,
T , and xmax will be precisely obtained with ALMA for the majority of the
clusters, while similar precision for D is possible for only massive clusters.
Let us point out, that it is possible to deduce the α parameter from the c(α)
relation. Table 5 shows, that the decision signi�cance will be well over 95%
even for clusters as small as Mvir = 1013M¯. Therefore, the observation with
ALMA will surely end the controversy between the two possibilities for α.

Figures 12, 13, and 14 depict the likelihood contours for Model II with
the direct evaluation of eq. (102), without the Fisher matrix approximation.
The 1σ contours are well-approximated with ellipses, if D − ∆D > 0 for
Mvir ≥ 1014M¯, e.g. D > 0.1, xmax < 1.7c, and Mvir ≥ 1014M¯. Therefore,
in these cases, the inequality (105) assumes the equality for the parameter
uncertainty. The parameter distribution around D ≈ 0 is distorted, and
higher con�dence level contours for arbitrary D are banana shaped in the
xmax −D plane.
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Mvir z α Θ c Ts T (0) xmax D S
[M¯] [′] [−µK] [−µK] [c] [c] %
1013 0.3 1 1.8 7.9 18 22 1 0.01 -
- - - - - - - 0.73 3.3 68
- - - - - - - 1.5 6.6 95

1013 0.3 1.5 1.7 4.6 16 27 1 0.01 -
- - - - - - - 0.73 3.3 68
- - - - - - - 1.5 6.5 95

1014 0.3 1 3.8 5.0 97 130 1 0.01 -
- - - - - - - 0.028 0.13 68
- - - - - - - 0.055 0.26 95

1014 0.3 1.5 3.8 2.9 1100 160 1 0.01 -
- - - - - - - 0.027 0.13 68
- - - - - - - 0.054 0.26 95

1015 0.3 1 8.1 3.1 560 780 1 0.01 -
- - - - - - - 0.001 0.005 68
- - - - - - - 0.002 0.010 95

1015 0.3 1.5 8.1 1.8 7000 910 1 0.01 -
- - - - - - - 0.001 0.004 68
- - - - - - - 0.002 0.008 95

Table 4: Parameter variance, Model II

Mvir z α Θ c Ts T (0) xmax D S
[M¯] [′] [−µK] [−µK] [c] [c] %
1013 0.3 1 1.8 7.9 18 22 1 0.01 -
- - - - 1.0 15 12 0.76 3.3 68
- - - - 2.0 30 24 1.5 6.6 95

1013 0.3 1.5 1.7 4.6 16 27 1 0.01 -
- - - - 0.80 132 22 0.76 3.3 68
- - - - 1.6 264 45 1.5 6.6 95

1014 0.3 1 3.8 5.0 97 130 1 0.01 -
- - - - 0.14 6.4 4.8 0.029 0.13 68
- - - - 0.29 13 9.6 0.058 0.27 95

1014 0.3 1.5 3.8 2.9 1100 160 1 0.01 -
- - - - 0.11 67 9.6 0.028 0.12 68
- - - - 0.21 133 19 0.056 0.26 95

1015 0.3 1 8.1 3.1 560 780 1 0.01 -
- - - - 0.014 2.3 1.6 0.001 0.005 68
- - - - 0.027 4.6 3.2 0.002 0.010 95

1015 0.3 1.5 8.1 1.8 7000 910 1 0.01 -
- - - - 0.011 28 3 0.001 0.004 68
- - - - 0.023 56 7 0.002 0.008 95

Table 5: Parameter variance, Model I
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Figure 15: The ∆xmax (left panels) and ∆D (right panels) variances are
shown for various xmax (x-axis) and D values (y-axis). Model II Fisher matrix
was used, with (z, α) = (0.3, 1.5) and Mvir = 1013, 1014, 1015M¯. The units
are c (with the appropriate Model II value).



Figure 16: The ∆xmax (left) and ∆D (right) uncertainty for various z. Model
II was used, and the virial mass was taken 1013 (red), 1014 (blue), and 1015·M¯
(green). The units on are c (with the particular Model II value).

Figures 15 and 16 give an overview of the ∆xmax and ∆D variances for
various parameter choice. These plots were calculated using the Fisher ma-
trix. The plots show that increasing xmax increases the uncertainties ∆xmax

and ∆D, while increasing D only slightly increases ∆xmax and leaves ∆D
unchanged. These plots correspond to various Mvir choices, but use �xed
values for z = 0.3 and α = 1.5. The z and α dependence is plotted on 16.
It is clear, that the α parameter does not alter the ∆xmax and ∆D uncer-
tainties. Changing z yields a maximum in ∆xmax and ∆D around z = 0.4.
The parameter uncertainty decreases by a factor of 10 for z ≈ 0 or z ≈ 3
compared to the z = 0.4 value.
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8 Conclusions
We have shown that the near-future Atacama Large Millimeter Array (ALMA)
is well-suited for studies of the intra cluster medium density distribution using
the Sunyaev-Zel'dovich (SZ) e�ect. The angular beam diameter and sensi-
tivities are predicted to reach 2” and 10µK for this system, which exceed
present detector resolutions with more than two orders of magnitude. A rich
galaxy cluster observed at 100 GHz for 30 hours yields a SZ signal-to-noise
ratio that is high enough to make inferences about the barionic and dark
matter distributions. We showed that the ALMA detector will be capable of
judging whether the current assumptions on the cluster physics need to be
revised.

The hydrodynamic equations were solved for the self-similar gas density
in the dark matter background. The dark matter pro�le was parameterized
with α, and every calculation was evaluated for both values common in the
literature, i.e. α = 1 and 1.5. Within this framework, the resultant density
pro�le as a function of radial distance is small but nonzero even in the faraway
regions. As a modi�cation, we introduced a hypothetical linear cuto� in the
density pro�le, where the density falls to zero within a �nite radial distance.
This assumption is consistent with the theory of cluster evolution (see [14]
and [15]).

We have calculated the change in the SZ image of the cluster with the
ALMA detector. We assumed 10µK �at-power Gaussian noise. We con-
structed the optimal �lter matched to the self-similar cluster density model.
The corresponding likelihood function was used to see whether our �ducial
model with an edge can be distinguished from the original model without
an edge. It is important to emphasize that this test is practically model
independent, since it is only weakly sensitive to the central region, but this
sensitivity is signi�cant in the outer region, where the various cluster models
in the literature are identical. We calculated the signal to noise ratio in two
ways, with 4 (Model I) and 2 free parameters (Model II), respectively. These
parameters are the radial distance of the edge, xmax, the length of the cuto�,
D, the concentration parameter, c, and the central temperature decrement,
T (0), for Model I. For Model II, c and T (0) were calculated from theory
assuming no scatter around the correct values. Other parameters, such as
the virial mass, Mvir, the redshift, z, the dark matter exponent, α, and the
virial angular radius, Θ, can be measured to a higher precision and were not
varied. The results are within 10% for Model I and Model II. The signal to
noise ratio is 470 for a rich cluster of virial mass 1015 ×M¯ and it is 16 for
a regular cluster with 1014 ×M¯. The parameters such as c and T (0) were
assumed to be the correct values for both models with and without a cuto�.
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Next, a more realistic case was considered, when the parameters of the
cluster with and without an edge are �tted independently for a given mea-
surement. As it turned out, there is a large systematical error in parameters
c és T (0) for the model without an edge, provided that the cluster does have
an edge within approximately one virial radius. Nevertheless, the signal to
noise ratio decreases only by 56% at most for detecting the edge. Therefore,
the edges remain visible for normal and rich clusters.

Finally, we examined the precision of the parameter estimation of the
model with an edge. As a result, typical values for normal and rich clus-
ters are (∆c/c, ∆T (0)/T (0), ∆xmax/c, ∆D/c) = (2.8%, 3.7%, 2.9%, 13%) and
(0.45%, 0.2%, 0.1%, 0.5%), respectively. Since there is a one-to-one corre-
spondence between c and α, with c(α = 1)/c(α = 1.5) = 1.7, the SZ e�ect
is capable to decide which α model best describes reality. The controversy
between the two dark matter pro�les will be solved. Measuring the SZ ef-
fect with ALMA will not only detect the cluster's edge, but it will be able
to locate it with a high precision. This information will surely improve our
understanding of the structure of matter within the clusters.
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