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1 Magyar nyelvii kivonat

A galaxisklaszterek megfigyelése a
Sunyaev-Zel’dovich effektus segitségével

A Sunyaev-Zeldovich (SZ) effektus egyre értékesebb megfigyelési leheto-
séget nyujt az asztrofizika szaméara. A jelen technologiai fejlédésnek koszon-
hetGen az SZ effektus imméar alkalmas a massziv klaszterok feltérképezésére,
az intraklaszter kozeg (ICM) vizsgalatara és a kozmologiai paraméterek meg-
szoritasara.

A termikus SZ effektus a kozmikus mikrohullamn héattérsugarzas (CMB)
masodlagos fluktuacioja, ami forro intergalaktikus gézzal vald kolcsonhatéas
soran jon létre. Az utolsd szorasi feliiletrdl érkezé hideg CMB fotonok in-
verz Compton-szorodnak, ami kicsiny intenzitas gyengiilést okoz kis illetve
er6sodést okoz nagy energian (v < 218GHz ill. v 2 218GHz). Az SZ effektus
a CMB anizotrépia dominans forrasa kis szogskalan.

Jelen miszerek jelentGs jel-zaj arannyal detektalnak klasztereket. A ko-
vetkezG generacios miiszerek altal alkotott galaxis klaszter térképek az ég-
bolt jelentss részét le fogjak fedni. A klaszterek szamossagat illetve ezek
sz0gfiiggs teljesitményspektruméat tobben vizsgaltak (lasd pl. [3] [4] [5] [6]).
A felmérések eredménye meglehetésen lenyiigézs, a kovetkezs generacios SZ
miiszerek varhatoan naponta tobb klasztert kell, hogy észleljenek.

Az SZ effektus megfigyelése napjainkban kezdi feltdrni a benne rejls
lehetGségeket. A jelenleg miikods SZ megfigyelések kozé tartozik a BIMA,
a Diabolo, a SuZIE, a Ryle Tavcss, az OVRO és a CBI. Ezeken kiviil a ko-
vetkezG generacios bolometrikus és interferometrikus miiszereinek épitése a
végs6 stadiumhoz kozelit. Ilyenek az SZA, az AMI és az AMiBA teleszkop-
rendszerek. Ezen miiszerek tobb nagysigrenddel lesznek érzékenyebbek, mint
az el6djeik. A jelen évtized masodik felében tovabb folytatodik az SZ mi-
szerek fejlesztése, hisz az elmult évben szamos hosszi tavi program nyert
tamogatast: az APEX, az ACT, az SPT, a Planck és az ALMA.



A dolgozat legfébb célkitiizése annak a vizsgalata, hogy az emlitett kovet-
kez6 generacios miiszerek koziil az ALMA milyen mértékben képes a galax-
ishalmazokrol alkotott bizonyos ismereteinket javitani. A klaszterek belse-
jében levs anyag SZ lenyomatanak mérésével, az ionizalt gz stirtiségeloszla-
sat lehet meghatéarozni és ebbdl kovetkeztetéseket lehet levonni a sétét anyag
strukturara vonatkozoan.

A galaxisfejlédés klasszikus elmélete szerint [14] a klaszterek énhasonld
akrécion keresztiil jonnek létre. A kis méreti stirtisodési perturbaciok felé
gombszimmetrikus anyagaramlas indul. Az elmélet joslata szerint, tiszta
iitkozéses vagy iitkozésmentes anyag esetén, — vagy akar a kettd egyiittes
keveréke mellett — a folyamat végén stacionarius 6nhasonl6 egyensily all be
az anyagtobblettel rendelkezé stiriiségingadozas koriil. A klasztergiz beesését
megallitja egy, a kozéppontbol kifelé halado, I6késhullam. A gaz sugariranyu
stirtiségfiiggvényében a lokés kozelében egy ugras alakul ki, ahol a siirtiség
a bels6 oldalon lényegesen megnovekedhet. Vannak bizonyos megfigyelések,
amelyek szerint egyiittes optikai-, radio- és rontgenmegfigyelések segitségével
[15] ezt a stirtiség 16kést mar meg is figyelték bizonyos keletkezd klaszter pro-
totipusok koriil. Elméletileg ezen diszkontinuitas léte a SZ effektus mérésével
is bizonyithato.

Mindezidaig a Sunyaev-Zel’dovich effektusra vonatkoz6 tanulmanyok nem
vették figyelembe a klaszterek peremén megjosolt gazstrtiség radidlis leva-
gasat. A leggyakrabban hasznalt egyszeri leiras az tn. ,/B-modell” (lasd
Cavalier, [17]). Ezen modell egy egyszert empirikus illesztési formulat je-
lent a gazsiirtiség profilra vonatkozdan, amely fiiggetlen a hattérben rejlé
sotét anyag eloszlastol, mindazonaltal nem mond ellent a jelen SZ és ront-
gen megfigyelés-eknek (lasd Mohr, [18]). Ettdl részletesebb modellek meg-
probaljak levezetni a gz strtiség profilt azaltal, hogy izotrép hidrosztatikai
egyensulyt feltételeznek a géz és sotét anyag eloszlas kozott. Az ongrav-
italo iitkozésmentes sotét anyag sirtiségprofiljat numerikus N-test szimulé-
ciok segitségével hozzak létre. A két csoport Navarro et al. [21] illetve

Moore et al. [22] megegyeznek abban, hogy a profilt egy univerzalis fiigg-



3 gzerint csokken. A bels§ tar-

vény irja le, amely a kiils6 tartoméanyban r~
toméanyokra vonatkozé hatvanykitevét tekintve azonban eltér a véleményiik,
—1ill. —1.5 a két vitatott érték. A gazsirtségre vonatkoz6 megoldast ezen
sotét anyag hattéren adja meg példaul az in. levagott izoterm gémb modell”
(lasd Shapiro, [16]). Az izoterm elképzelést modositja az ,el6fiitott modell”
(lasd Holder és Carlstrom [19]) egy hémérsékletfiiggs, nem gravitacios ere-
detii entropia alapot feltételezve a klaszter magjanak kozelében. Egy kovet-
kez$ megkozelités szerint (lasd Komatsu és Seljak, [20]), — a s6tét anyaghoz
hasonlé moédon — a gaz stiriiség is egy univerzalis 6nhasonl6 alakot vesz fel.
A legkorszertibb hidrodinamikai numerikus szimulaciok [7] 6sszhangban van-
nak a fenti modellekkel. A klaszter szamlalo statisztikara és a szogfiigg6
teljesimény spekt-rumra vonatkoz6 rontgen és SZ effektus joslatok némileg
eltérnek, azonban a megfigyelési mélység és érzékenység mindezidaig nem
jutott el arra a szintre, hogy donteni tudjon a kiilénb6z6 modellek kozott.

A dolgozatban Komatsu és Seljak izotrop, univerzélis, énhasonlé gazra
vonatkozo feltételezését kovettem [20], de bevezettem egy linearis levagast
a gazsiirtiség eloszlasara vonatkozoan egy véges sugaron kiviil. A sotét en-
ergiat is tartalmazo, lapos geometriaji, hideg sotét anyag modellt (ACDM)
hasznaltam a jelen WMAP méréseknek megfelelg paraméterekkel: (5, Qqpm,
Oy, Hy) = (0.7,0.253,0.047,70 x km/sMpc).

A dolgozatban megmutattam hogy a kozel-jovében megvalosulé Atacama
Large Millimeter Array (ALMA) a Sunyaev Zel'dovich effektus vizsgéalaté-
val elsGként alkalmas lehet a klaszterek pontos gazeloszlasdnak vizsgalatara.
A program realitasat jelzi, hogy az ALMA prototipus teleszkop, — egy 12m
atmér6j, multifrekvencias radioteleszkop,— az APEX, mar varhatéan idén,
2004 masodik felére elkésziil. A végsé allapotat az ALMA rendszer 2012-
ben éri el. A cél hatvannégy APEX teleszkop &sszehangolt lizemeltetése. A
miiszer minimdlis illetve maximdlis karhosszisdga 150 m ill. 10 km. Ezen
miiszer tervezett érzékenységére és linearis meéretére vonatkozod szamitésok
alapjan realis feltételezés 10uK-nél kisebb SZ hémérsékleti zajt tekinteni

2”7 szogfelbontas és 100GHz munkafrekvencia mellett. Ezt az érzékenységet



koriilbeliil 30 6ra megfigyelési idGvel lehet elérni. A megfigyelési id6t tovabb
novelve a detektor bizonyta-lansag tovabb csékkenthetd.

A gombszimmetrikusnak feltételezett, sztatikus esetre vonatkozo, hidrod-
inamikai egyenleteket 6nhasonl6 gazra oldottam meg, a megfelels sotét anyag
hatterének figyelembevételével. A sotét anyag profilt a szokdsos médon a-val
paramétereztem, és minden szamolast o mindkét értékére elvégeztem, azaz
a = 1ill. 1.5-re. Ebben a targyaldsban a stirtiség a sugar fiiggvényében kic-
siny, t6bbszoros viridlsugaron kiviil is véges jarulékot ad. Ezeb kiindulé mod-
ellhez képest a stirtiségprofilban bevezettem egy hipotetikus lineéris radiélis
levagést, ahol a stirtiség hirtelen zérusra csokken. Ez a feltételezés konzisztens
a klaszterek fejlodésének elméletével (lasd [14] and [15]).

Erre az eloszlasra vonatkozodan kiszamoltam az SZ kép megvéltozasat az
ALMA detektor esetén. A detektor és a hattér egyiittes hatasara 10uK
Gauss fehér zajt feltételeztem. Megkonstrudltam a korabbiakban kiszamolt
onhasonlo striségprofilhoz illesztett optimdlis szlir6t. A megfelels likeli-
hood fiiggvényt hasznaltam a levagasos és a leviagéas nélkiili SZ hipotézis-
profilok kozotti dontés elvégzésére illetve a dontés szignifikancia szintjének
vizsgalatara. Fontos hangsilyozni, hogy ezen teszt gyakorlatilag modell-
fiiggetlen, hiszen csak kis mértékben fiigg a klaszter belsG tartoményaitol
azonban a kiils6 régioban —ahol az irodalomban taldlhat6 kiilonb6z6 mod-
ellek azonos eloszlast josolnak — szignifikdns fiiggés adodik. Kétféle mo-
don szamoltam ki a jel-zaj hanyadost, négy illetve ketté szabad paraméter-
rel. Az elGbbit jeloljiik Model I-nek az utobbit pedig Model II-nek. Ezek
a paraméterek az I esetben a peremhez tartozé radidlis tavolsag, Tiax, a
levagés ,vastagsaga”, D, a koncentracié paraméter, c, és a kdzépponti SZ
homérséklet csokkenés T(0). A II esetben a ¢ és a T(0) paramétereket a
klaszterek gomb-szimmetrikus 6sszeomlasara vonatkoz6 elméletébdl kaptam
meg, és ez koriil semmilyen Acill. AT(0) szorast nem engedtem meg. Egyéb
paraméterek, mint a viridl tomeg, M, a voroseltolodas, z, a bels§ sotét
anyag exponens, «, és a klaszter szogmérete,©, lényegesen nagyobb pon-

tossaggal mérhetsk, ezért ezeket nem valtoztattam. Az eredmények 10%-t6l



kevésbé térnek el a Modell I és a Modell II esetén. A jel-zaj hanyados egy
nagy tomegi klaszter esetén (M, = 10 x M) S/N = 470, egy normél
klaszterre pedig (M, = 10 x M) S/N = 16. Ebben a szdmoldsban a c és
a T'(0) paraméterekre feltételeztem, hogy megegyeznek a korrekt értékekkel,
mind a levagasos mind a levagas nélkiili esetben.

Ezutan, egy realisztikusabb esetet tekintettem, amelyben a klaszter paramétereit,
— levagassal vagy anélkiil, — kiilon-kiilon illesztettem egy adott megfigyelés
esetén. Ebben az esetben az deriilt ki, hogy a hatar nélkiili esetben jelent&s
szisztematikus hiba adodhat a c illetve T'(0) értékeire vonatkozoan. Ennek
feltétele, hogy a klaszternek valoban létezzék hatara, mégpedig legfeljebb
kb. 1 viral sugar koriil. A jel-zaj ardny mindazonaltal, a — arra a kérdésre,
hogy létezik-e a klaszternek pereme, — legfeljebb 56%-al csokken le az eredeti
egyszertibb szamolashoz képest.

Végiil megvizsgiltam a paraméterbecslés pontossagat a peremet tartal-

maz6 modell esetén. Eredménynek a kovetkezs értékeket kaptam:

(Ac/c, AT(0)/T(0), Axpmax/c, AD/c) = (2.8%,3.7%, 2.9%, 13%)
= (0.45%, 0.2%, 0.1%, 0.5%)

normaél illetve massziv klaszter esetén. Mivel « és ¢ kozott létezik egy egy-
egy értelmi megfeleltetés, c(a = 1)/c(a = 1.5) = 1.7, az SZ effektus képes
eldonteni, hogy melyik o modell irja le jobban a val6sagot. A sotét anyagra
vonatkozo vitat ezzel a jovében biztosan meg lehet oldani. Az itt feltiintetett
szamokat a Fisher matrixra vonatkozo kozelitéssel kaptam. A dolgozatban
megvizsgaltam az egzakt valoszintiségi eloszlast is, amik nagy pontossiggal
(1%-on beliil) megegyeztek a Fisher matrixbol szarmaztatott értékekkel.
A dolgozatban minden szamolast 18 féle paramétervalasztas esetén végeztem

el. Ez 3 x 2 x 3 blokkokra bomlik: a valodi klaszter virialtomegét 1013,
10* és 10'° x Mg, a valodi D értéket 0.01 és 0.5¢, a valodi Tpay értéket
1, 1.5 és 2¢ kozott valtoztattam. Ezen kiviil a legegyszeriibb esetekben,
(M, D, Zmax) = (10Mg,0.01¢, ¢) leellenériztem a vordseltolodas és « fiig-

gést is. Altalaban azt kaptam, hogy a klaszter széle nagy tomeg és kis Zmax



értékek esetén detektalhato legpontosabban. A voroseltolodas fliggvényében
1 nagysagrend valtozas johet létre a jel-zaj aranyban, és annak z ~ 0.4 koriil
minimuma van. Az « ill. D konkrét értéke viszont a hatékonysag szempon-
tjabol koz6mbos.

Végeredményben tehét az SZ effektus mérésével az ALMA redszer nem
csak a klaszter szélének jelenlétét fogja tudni kimutatni, hanem annak helyét
is nagy pontossaggal meg fogja majd &llapitani. Ezen ismeretek egészen
biztosan el§ fogjak segiteni a klaszterek belsejében 1évG anyag szerkezetének

pontosabb megértését.



2 Introduction

The Sunyaev-Zel’dovich (SZ) effect has recently become a valuable obser-
vational tool [1]. Observational programs are beginning to measure the SZ
effect to map out massive clusters of galaxies, study the intracluster medium
(ICM), and constrain cosmological parameters [2].

The thermal SZ effect is a secondary distortion of the cosmic microwave
background (CMB) spectrum caused by hot intergalactic gas along the line
of sight to the surface of last scattering. The cool CMB photons undergo
inverse Compton scattering on the hot electrons, gaining on average a small
amount of energy in the process, creating an intensity decrement at low
frequencies (v < 218GHz) and an increment at high frequencies. The SZ
effect is the dominant source of CMB anisotropy at small angular scales.
Figure 1 displays the CMB anisotropy and the SZ component.

Current instruments are now regularly detecting and imaging clusters
at high signal-to-noise, and the next generation of instruments should be
capable of mapping fairly large portions of the sky as a means of finding
clusters of galaxies. Several works (e.g., |3] |4] |5] |6]) have predicted the
number of clusters that could be expected in future SZ surveys and their
angular power spectrum. The survey yields are quite impressive; the next
generation of SZ instruments should be able to detect several clusters per

%

Figure 1: Maps of the simulated thermal SZ effect adopted from [7]. The
left panel shows only the SZE contribution, while the right shows both the
primary and the secondary CMB anisotropy. The field of view is roughly
1° x 1° on both plots.

Observations of the SZE are just beginning to demonstrate their poten-



tial. Currently commissioning SZE observations include the BIMA! [§], the
Diabolo [9], the SuZIE? [10], the Ryle Telescope® [12], the OVRO! [13], and
the CBI°. New generation bolometric and interferometric instruments are
approaching the final stages of development, such as the BOLOCAMS [11],
the SZA", the AMI®, and the AMiBA®. These instruments are anticipated
to be over an order of magnitude more sensitive and will soon begin routine
observations. The SZ instruments will continue increasing its capabilities
and performance throughout the decade, as several additional new genera-
tion SZE instruments have recently been funded. These are the APEX!?, the
ACT!, the SPT!2, the Planck'®, and the ALMAM,

The present study aims to analyze the extent that this near-future pre-
cision technology will improve our understanding on galaxy cluster physics.
In particular we make predictions for the ALMA system. Measuring the SZ
imprint of the ICM, it is possible to map the ionized gas density distributions
and make predictions on the underlying dark matter structure.

The classical theory of cluster evolution [14] states that the clusters form
by self-similar accretion and secondary infall on a compact density pertur-
bation. The theory predicts that collisional or collisionless matter, or the
mixture of the two evolve to a stationary self-similar equilibrium within a
neighborhood of the overdense density perturbation. The infall of cluster gas
is halted by a shock wave which propagates outward from the center. The
gas density has a discontinuity at the shock, and the density is much larger
in the inner region. There are indications that this density shock has already

LAn array of ten 6.1m mm-wave telescopes located at Hat Creek, CA, and operated by
the Berkeley-Illinois-Maryland-Association.

2Sunyev-Zel’dovich Infrared Experiment, a six-element 140 GHz bolometer array.

3An array of eight 13m telescopes used in interferometric mode, located in Cambridge,
England.

4An array of six 10.4m telescopes located in Owens Valley, CA, and operated by Caltech.

5Cosmic Background Imager, an array of 13 0.9m telescopes, sensitive to 3'-20’.

6A 151-element bolometer array, operated by the Caltech Submillimeter Observatory.

"Sunyaev-Zel’dovich Array, an array of eight 3.5m telescopes which will be deployed
with the existing OVRO and BIMA arrays.

8 ArcMinute Micro-Kelvin Imager, an array of ten 3.7m telescopes, located in Cam-
bridge, England.

9 Array for Microwave Background Anisotropy, 19 1.2m telescopes operated at 90 GHz.

10 Atacama Pathfinder Experiment, a 12m telescope ALMA prototype, end of 2004

1 Atacama Cosmology Telescope, 6m telescope with a 1024-element bolometer array, 3
colors, planned to start running by November 2006.

1280uth Pole Telescope, 8Sm telescope with a 1000-element bolometer array, operational
by 2008.

13Planck Explorer satellite, launch planned for 2008

14 Atacama Large Millimeter Array, an array of sixty four 12m telescopes, planned for
2012
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been observed around forming cluster prototypes with combined optical, ra-
dio, and X-ray analysis [15]. In principle, the existence of the discontinuity
can also be detected using the SZ effect.

Previous studies on cluster phyisics with an emphasis on the SZ effect
do not account for the anticipated cutoff in the cluster gas density profiles.
The simplest popular discription is the 73 model” [17]. The model provides
a simple fitting formula for the gas density profile, independent of the un-
derlying dark matter profile, and it is in accord with present SZ and X-ray
observations [18]. More sophisticated models derive the gas density profile
by assuming isotropic equilibrium between the gas and dark matter distri-
butions. The dark matter density profile is obtained by numerical N-body
simulations. The two groups [21] and [22] agree that the profile is universal
with an =2 ringdown in the outer regions but argue on the exponent in the
inner regions between —1 or —1.5. A solution for the gas density on this
dark matter background [16] is the truncated isothermal sphere model. The
"preheated model” of [19] assumes a temperature dependent nonzero entropy
floor in the cluster core, modifying the isotherm model. Another approach
is presented in [20] where the gas density assumes a universal self-similar
form. State-of-the-art hydrodynamic numerical simulations |7] are in accord
with the above models. The implications on the X-ray and SZ signatures re-
garding the cluster number count statistic and the angular power spectrum
are somewhat different in the various models, but as of now the observation
depth and sensitivity has not reached the level to decide which model comes
closest to reality.

In this study we follow the approach of [20] for isotropic self-similar equi-
librium, but introduce a linear cutoff in the gas density distribution at a
finite radius. For the cosmological model, we use the ACDM cosmology. We
approximate the angular power spectrum of the unresolved CMB anisotropy
as a white gaussian noise. We calculate the SZ surface density profile for the
models with and without the density cutoff, and examine if these models can
be distinguished with the future ALMA system in the noise background. For
the comparison we derive the optimal matched filter, and analyze the signal
to noise ratio at which the distinction can be made between the two models.
We then calculate the probability distribution and the level of significance
of the comparison. The score of the test is dominated by the contribution
of the region around the cutoff in the outer region. Since all other models
agree on the SZ imprint of this domain, our result for detecting cluster edges
is mostly model independent. Finally we examine the precision at which the
various parameters of the self-similar model — including the radial distance
and the "width” of the cutoff,— can be measured.
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3 The proposal for the Atacama Large Millime-
ter Array

This study offers a possible application to the ALMA project regarding the
observation of the gas density cutoff. Thus, it is necessary to review the
expected technical specifications of this instrument.

ALMA will be comprised of some sixty four 12-meter sub-millimeter qual-
ity antennas, with baselines extending from 150 m up to 10 km. Its receivers
will cover the range from v = 70 to 900 GHz. Anticipated SZ tempera-
ture sensitivity for a Aty ~ 60s integration period is between oy ~ 100K
and 24 mK for the compact configuration depending on the frequency of the
detection.

We assume antennas defined by the request for proposals for construction
of the prototype antennas. The expected aperture efficiency has been taken
from [26]. The receiver sensitivity is assumed to be 40K - 50K at 100GHz,
6h” + 4K up to 650GHz and 8M at 850GHz. The atmosphere is assumed
to "be characterized by 1Imm of prempltable water vapor, and opacities are
calculated at the various frequencies according to [27].

Generally a baseline B corresponds to a beam diameter

c " v -1 B \!
Ao=Tp =T x <1OOGHZ> (BOOm) (1)

The resulting temperature sensitivity for the compact configuration (B =
150m) according to [28] is given in table 1. The left panel shows the beam
diameter and the sensitivity with integration time 60s. On the right panel
we calculated the baseline needed to have A¢ < 2”7 and the correspond-
ing sensitivity with the same integration time, 60s. In the last column of
the right panel we calculated the corresponding integration time, which is
needed to reduce the noise variance to 10uK. This was achieved by using
op x v/ B?At;,;. This integration time is below 2 days for frequencies below
300GHz.

For the present study we will always approximate the sensitivity of the
detector with op < 10uK at a resolution of A¢ ~ 27. This assumption is
realistic for an observation with ALMA. For even larger observation times,
the detector noise can be neglected compared to the statistical fluctuations
of astrophysical origin.

The design of the ALMA system was not related to the aspect considered
in this study. It was intended to detect and study the earliest and most
distant galaxies, the epoch of the first light in the Universe. It will also
look deep into the dust-obscured regions where stars are born to examine

12



v A¢ (7D)60s v B | (0D)sos | (Atint)10ux
[GHz] | [arcsec] | [mK] [GHz] | [m] | [mK] [hr]

35 11.79 0.1079 35 884 | 3.747 67

90 4.584 0.1871 90 344 | 0.983 31

140 2.947 0.2518 140 221 | 0.547 23
230 1.794 0.4317 230 150 | 0.432 31
345 1.196 1.007 345 150 | 1.007 169
409 1.009 1.799 409 150 | 1.799 539
650 0.6347 13.67 650 150 | 13.67 3.11 x 10*
850 0.4853 24.46 850 150 | 24.46 9.97 x 10*

Table 1: Temperature sensitivities and integration times

the details of star and planet formation. In addition to these two main
science drivers the array will make major contributions to virtually all fields
of astronomical research.
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4 Self-similar surface density profiles

Many high-resolution N-body simulations suggest that the dark matter den-
sity profile pam (1) is well described by a self-similar form: pam(7) = psyam(7/7s)
where ps is the mass density normalization factor, rs is a length scale, and
Yam(7) is a non-dimensional function representing the profile. The density
normalization, ps, is determined to yield mass M,; when pgn,(r) is integrated
within the virial radius, ry;,. The length scale ry is defined as ry = ry,/c,
where ¢ is the concentration parameter. We calculate 7, (M, 2) and ¢ ac-
cording to a spherical top hat model and an empirical fitting formula found
in the literature by equations (16) and (12) below.

The dark-matter profile is approximated with the following analytic form

! 2)

Yam () = W

where the parameter « is assumed to be 1 or 3/2 (see [21] and [23]).

The gas density profile can be obtained using a polytropic model in hy-
drostatic equilibrium with the dark matter background. In this case, the gas
density and temperature profiles assume a self-similar form,

Pgas (T/Ts) = pgas(o)ygas<r/rs) (3)
Tas(r/75) = Tgas( 00’ (/1) (4)

where Pyas ¢ pgasTeas ¢ p7 has been used. The hydrostatic equilibrium
equation

_,dP, M(<r)
LB - —= 5
pgas dr r2 ( )
can be solved [24] for ygas(2) for a fixed dark matter mass distribution.
B y—-1 ¢ * o m(u)
@) =1 -3 = / d 6
ygas (:E) n v m(c) 0 u u2 ( )

where 7 is an integration constant, and m(u) is the dimensionless mass within
a distance u from the center

m(x) ~ man(x) = / " dutiyam(u) )

These integrals can be evaluated analytically [24] for the particular cases
a=1and o =3/2.

The mass-temperature normalization is given by the virial theorem
-1 __ GlumpMVir

= 8
3Tvir kBTgas (0) ( )

Ui
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Both theoretical and numerical studies assert that the gas density profile
traces the dark matter density profile in the outer region of the halo (see
|20] and references therein). Therefore, the slopes of these two profiles are
assumed to be the same for ¢/2 < x < 2¢. z* shall denote the x value where
the slopes equal. This requirement fixes the 7 normalization in eq. (6) and
the polytropic index 7 (see [20] for details). The normalization is given by

_ =3 cm(z") v—1 ¢ o um(u)
1= e ), o
o a+(3—a)1ix*] (10)

A good approximation for 7y is

where the parameter cypy is an « independent concentration parameter
defined below.

The concentration parameters, ¢ and c¢ypy can be written in terms of the
virial mass and redshift for a given cosmological model. An empirical fitting
formula [29] is

CNFW if a=1

C<Mvir7a7z> - { CNFW/1'7 if a=15 (12)
6 Mvir e

_ 13

CNFW 1+2 (1014h—1M®> ( )

Specifically ¢(10"°M,1,0) = 4.1 and ¢(103M,1,0) = 104. Eq. (12)
supplies a one-to-one correspondence between ¢ and M,;,, these constants
carry the same information about the cluster. With this identification, in
the remaining of this study, we shall use ¢ and M,;, interchangeably.

The self-similar model defined above does not assign a value for the gas
density normalization pgas(0). It’s value can be calculated by requiring that
the ratio of the total dark matter and gas masses’ ratio within x,,, attain
Qqm/Np. Simulations without feedback from galaxy formation typically find
values for the cluster gas mass fraction that are only slightly lower than the
input global baryon fraction [32]. We shall adopt (Q4m, 25) = (0.253,0.047)
according to recent WMAP measurements. Thus

mdm(xmax> QB
as 0) =
pg ( ) mgas(xmax> Qdm

(14)
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where mgas() is the accumulated dimensionless mass of the gas defined as

M) = [ il (15)

and Mgy, was defined similarly by (7). The value of z,, cannot be increased
without bounds, since mgas(z) and mam () are unbounded for large = with
different distributions. Moreover, since Yam(z) tends to zero and Ygas(z)
approaches a finite nonzero value while * — oo, the dark matter-gas mass
fraction lim, oo Mam(2)/Mgas(z) = 0 implying that pes(0) = 0. Therefore
Tmax = 00 is inadequate for calculating the normalization. Nevertheless
pgaS(O) has only a mild z,., dependence for reasonably low x... values.
USing &max = be, yields a maximum error of 10% for zyax € [c, 10c] (see fig.
5 below).

We calculate the virial radius, 7, with the spherical top hat collapse
model using (€2,,,, Qa, k) = (0.30,0.70,0.70) flat universe

M, 1/3
"o = (@ BA ) 16)
o) = 20, (14 27 4 0y (17
A, = 187 + 82d — 39d° (18)
d(z) = —Sh (19)

Q1+ 2)3 4+ Qp

Instead of the concentration parameter, the observable quantity is the
angular diameter of the cluster. The angular radius corresponding to the
virial radius is

O — Tvir — (1+2)2
da(z) ™ di(z)

(20)

The luminosity distance is

1
Co da

dr(z)=(1+z —/ 21

L() ( ) 0 J(1+2)"1 a2VQma_3+QA ( )

This can be expressed [30] with the universal fitting formula

Co

dp(z) = (1+2)F0 [f(1) = f((1+2)"1)] (22)
1 s 52 53 -1/8
fla) =2vs?+1 {—4 — 0.1540—3 +0.4304— + 0.19097— + 0.066941s*
a a a a
(23)
s° = Qn /O (24)
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With this choice, the only free parameters remaining in the gas density,
Peas(), are My, and .

Let us introduce a modification of the density profile (2) by accounting
for the cutoff of the cluster on the edge. As it was pointed out above (14)
the truncation is mandatory when calculating the gas density normalization.
Let us assume that the density has a linear cutoff between radii . — D
and Ty + D. At 2. + D the density attains the background value. Since
this value is negligible compared to yam(c) for realistic clusters, it will be
approximated by 0. Since the gas density profile traces the dark matter
profile, the linear density cutoff can be imposed on directly the gas density.
In what follows, the original density function (6) will be referred to as ygas, (),
and Ygas(2) shall denote the density profile with a cutoff.

Yeas(T) = Ygaso (@)W (2) (25)
where
1 if 2 <xpax—D
W(z) = GmebDor i g 4D <2 < Zypax — D (26)
0 if Zpex +D <2z

For consistency, the pg.s(0) gas density normalization has to be recalcu-
lated from eq. (14) using the proper m(z) (eq. (7) and (15)) accordingly.
Practically pgas(0) is altered by @ only, the D dependance is negligible.
Thus, we recalculate pg,s(0) with (14), and will not worry about the D # 0
value.
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5 SZ surface brightness profiles
The SZ surface brightness profile is given by
I(z) = iog(0)yc () (27)
hv

where ¢ = —7*— is the dimensionless frequency, 7o = 2(kgT)3/(hc)? is the
intensity scale, and y¢c is the Compton parameter.

0t e/ +1
9(9) = (69 — 1>2 (969 1 4) (1 + (SSZE(Q,TQ)) (28)

The 0szp(x,T.) term is the relativistic correction to the frequency depen-
dence. The Compton yc-parameter is defined as

kgT,
yo(x) = /ne—B sordl (29)

MeCh

where o7 is the Thompson cross-section, n. is the electron number density,
T, is the electron temperature, kp is the Boltzmann constant, m.c2 is the
electron rest mass energy, and the integration is along the line of sight (i.e.

along r = Va2 + 2 for a given x). We calculate the electron temperature,
Te, with T, = Ty, using eq. (8), and the number density is given by

. Pgas(0)Ygas(T)
ne(z) = —Mmp

(30)

where m, is the proton rest mass, and p = 0.59 for an ionized H-He plasma
with 25% Helium abundance by mass.
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Figure 2: Predicted SZ surface brightness profiles for a = 1 (left) and
a = 1.5 (right). The other parameters were M, = 10 M and z = 0.1.
The solid curves show Y (z) profiles with various Zy.x choices. The dot-
ted, dashed and dadotted curves were obtained by replacing ygas(z) with
Ydm (T)Ygas (%) /Yam(2*) in equation (35), with 2" = ¢/2 for T = ¢ and
¥ = ¢ for Tp.x > C.

Substituting (4) and (30) in (29) the SZ surface brightness profile (27) is
separable into a dimensionless integral with spacial dependence and a con-

stant coefficient
I(x) = 1Y (2) (31)

where

Y(z) = /_ Al e (VEF ) (32)

kpT4as(0
1, = g(8)ign.(0) L0 (33)
€0
Substituting (8) and (30) gives
. 1 GMvir
I, = g(e)ZOUTmecg Tpgas(())n (34)
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Figure 3: The difference between the normalized brightness profiles with
and without a cutoff, for various D values. The difference is taken be-
tween Y (z)/Y (0) profiles with different 2., and D parameters, but identical
M,ir, v, z values. a = 1.5, 2 = 0, Zypaxo = 100 was assumed on all plots. (The
z dependence is implicit in the concentration parameter c¢.) The top row
uses M., = 10 M, the bottom row has M, = 10¥*M,. The left panels
have z,.c1 = ¢, the right panels have x,,,,1 = 2¢. The SZ brightness profiles
were normalized with 1/Y(0). This allows the profile with .2 = 100 to be
nonzero. Unnormalized SZ profiles’ differences are plotted on fig. 4.
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Figure 4: The difference between SZ brightness profiles with a cutoff at
Tmax1 = € and at various Zmax2. The scale on the y-axis is 10uK, which is the
typical noise power. The graphs are therefore related to the signal to noise
ratio for deciding between ' ax1 and Tpace. The left plot has M., = 10 M),
and right has M, = 101¥M,. The o and z values are fixed at 1.5 and 0.1.
Notice that it is irrelevant to choose xy.x2 to approach infinity, since then
the corresponding /5 would vanish.

The domain of the integral in Y (x) can be truncated to the maximal
radius where the density is nonzero.

(Tmax+D)2—x2
Vi) =2 Al YV 5 P (35)

Fig. 2, 3, and 4 plot the predicted SZ brightness profiles’ spacial de-
pendence with and without the cutoff. Fig. 2 depicts the Y'(z) profile for
a =1 and o = 1.5, and shows that a higher « leads to a smaller Y (0) value.
Unless a particular 2.« cutoff is introduced, the ygs(x) and Y (x) profile
has a nonzero limit for large x. Various choices of x,.x can be compared by
analyzing the difference between the associated intensity profiles (see below).
Such differences between the Y (x) and I(x) profiles are plotted on figures 3
and 4. Note that the I(z) profile is obtained from Y (z) with multiplying by
the I coefficient. Various z.x choices generally lead to unequal I, values,
implying a nonzero difference between the I(x) profiles at x = 0.

The SZE intensity I(x) given by (31) is the deviation of the intensity
spectrum from the black-body radiation.

2h V?
1 = —=—— 36
CMB el —1 (36)
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The SZE intensity can be expressed conveniently as a small temperature
change of the CMB spectrum. Let us introduce the SZE temperature 7'(z)
increment by

~ Olous

I(x) = Tonrn T(x) (37)
Solving for the SZE temperature
T(z) = f(0)yc(z)Temp (38)
where f(0) is given by
‘1
f(e) = (QZG 1 — 4) (1 —+ 5SZE(07T6)) (39)

Therefore the SZE temperature profile assumes

T(x) =T:Y (x) (40)
where L oM
T, = f(e)TC’MBO'TmeC% Tlogas(())n (41)

[ Myw/Ms || o [ 100Hz [ 150 Hz | 200 Hz [ 250 Hz |

101 1 -13 -8 -2 5
1013 1.5 -19 -12 -3 7
10t 1 =75 -47 -13 26
10 1.5 ] -119 =75 -20 40
10 1 -420 -260 -73 141
101 1.5 ] -688 -435 -120 233

Table 2: Calculated central SZE temperatures, 7(0), in pK for various M,
a, and v values. (Zpax = 5¢)

Table 2. shows the calculated central 7'(0) values for various clusters’ SZE
signatures for various detecting frequencies. Figure 5. shows the slight z,.x
dependance of the central SZE temperature. The x,,,, dependence is implicit
in pgas(0) (eq. (14)) and also in Y (z) (eq. (35)). The former dominates the
Tmax dependence. Choosing .. = 5¢ produces at most a 10% error in the
central SZE temperature compared to the value with ., € [c, 10¢].
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Figure 5: The central SZE temperature T'(0) when varying .. Both figures
have My, = 10 M, 2 = 0, v = 100 GHz, while o = 1 left and « = 1.5 right.
Observe that choosing Zmax &~ 5¢ for the normalization of pgas(0) in eq. (14)
is adequate with a maximum error of 10% for z.x € [¢, 10¢].

Observe, that the @ = 1.5 dark matter profile yields oc 1.6x larger 7'(0)
values than the a = 1 model. We can elucidate the source of this increment
by tracking the differences between the two models in equations (40) and
(41). The difference is caused by the change in the pg,s(0)nY (0)/c product.
Since the dark matter model with o = 1.5 is concentrated more in the central
region, the gas density and the gas temperature is expected to be higher in
the center for = 1.5. Indeed, pgas(0) = 8.7 - 10%ppe for a = 1.5, while it is
2.0-10*ppg for a = 1. The 7 parameter is simply proportional to the Ty,s(0)
gas temperature (8), which is somewhat higher (22%) for a = 1.5. Third,
the 1/c¢ factor further increases the difference by 70%. Finally, the increment
caused by variables localized to the center is smeared by Y, which accounts
for the fact that the observation measures the projection of the intensity
along the line of sight. In particular, Y (0) = 0.14 for « = 1.5 and 0.73 for
a = 1. Therefore, the resulting increase in the central SZE temperature is
60% for a = 1.5.

A given detector measures the intensity at various 6 frequencies and z
radii. The SZE measurement is hampered by the secondary CMB anisotropies.
These are the unresolved thermal SZ effect and the Ostriker-Vishniac (OV)
effect. For the OV contribution we simply assume a flat band power contri-
bution of 1uK [19]. The unresolved thermal SZE contamination is strongly
non-Gaussian, and there is a significant amount of uncertainty in the small-
scale power, due to unknown effects such as gas cooling and feedback from
star formation. It is estimated [19] that the rms power on arcminute scales
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are between 1 and 6 /. For a conservative estimate we shall assumes
oy = 10uK (42)

white Gaussian noise. Note that intensity can be converted to temperature
with eq. (37).
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6 Detecting cluster edges

The response of a detector with a given window function W(x) associated
with its angular resolution for input 7'(z) is

h(x) = / T Wz — o)’ (43)

The window function of the detector will be approximated by a Dirac-9,
so that the hypotheses are the temperature profiles with no distortion. The
observation is taken over K distinct directions corresponding to the resolution
of the measurement. The measurement frequency is assumed to be a fixed
value.'®

The model with a cutoff hy(z) is set uniquely in terms of the parameters
(Myir, 2, &0, Tiax1, D). Since ho(z) is the hypothesis without a cutoff, it seems
plausible to use the same definition with the distinction z .0 = c0. However,
the density is unnormalizable in this case. For these reasons, instead of this
choice, we shall adopt the following definitions of ho(z).

1. The central gas density of ho(z) is chosen to equal the central density
of hi(x). Equivalently, the T(0) temperatures are assumed to be the
same for the two hypotheses.

2. The ho(x) model is chosen to equal the self similar model within a radius
Tmax2 Where the gas density drops to the background barion density
value for the given redshift. This value is between 4.5 < a0 < 5.5
for typical clusters with virial mass 10¥M, < My, < 10Y°M, at
any redshift and « (either 1 or 1.5). The gas density normalization
is calculated consistently with eq. (14). The profile outside Zyaxo is
truncated with D = 0. Note, that there is a 5% variance in the central
temperature with this definition (see fig. 5.). The central temperatures
of hy and hy are different in this case, the deviation is around 10% for

Lmax1 = C.

These ho(z) definitions will be referred to as Model I and Model II, re-
spectively. Although Model IT has the advantage of being a closed and consis-
tent theoretical description where pg,s(0) and thus 7} is derived from theory,
Model I is favorable for practical reasons. The SZ temperature decrement
scale T, can be fitted without constraining the cluster barion mass fraction,
which can vary among different observations. Similarly, the concentration
parameter ¢ can be set according to the observation, without strictly ap-
plying the ¢(My;, z) relation. For a comparison, the following statements

15In the numerical calculations we shall generally use 100 Hz.
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describe Model I and I1.

Model 1

hi(z) is described by parameters (M, 2z, a, Ty, ¢, Timax1, D). The cen-
teral gas density pgas(0) is irrelevant for the comparison of the SZ pro-
files, but can be calculated from these parameters if needed.

ho(z) is described by parameters (M, z, o, Tg,¢). The integration
bound Zyaxe in eq. (35) is taken to approach co. Practically, Zyaxe =
10c is an adequate choice.

The corresponding parameters of hq(z) and hy(z) need not equal, they
are fitted independently for a mock observation.

For a given observation, the parameters M, ¢, and T are expected
to approximately satisfy eq. (12) of ¢(Myi, 2), eq. (41) for T}, and eq.
(14) for pgas(0). The deviation from these values are assumed to be
caused by statistical rather than systematic errors. Our fiducial model
will have input signals with these values.

M and z are not free parameters, but are determined from a compari-
son with X-ray and gravitational lensing and spectroscopy observations.

Model II

hi(zx) is described by parameters (M, 2, &, Tmax1, D). The parameters
Peas(0), Ts, and c are derived from theory and are not allowed to deviate
from those values.

ho(x) is described by parameters (M, z, ). The cutoff distance Ty ax2
is calculated to have pgas(Tmax2) = pPBG-

vir and z are not free parameters, as in Model 1.

The expected output for the SZ intensity input of a cluster with or without
a cutoff, hi(x) or ha(x), can be calculated from eq. (31). Therefore the
measured output is to be compared with these two signal hypotheses. The
detector "sees” the cutoff if it can make a significant decision between the
two choices.
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6.1 Heuristic S/N calculation

We shall now derive a simple estimate for the signal to noise ratio for choosing
between profiles with and without a cutoff. For this estimate, the distinction
between Model T and II need not be utilized. The cutoff radius is taken
Tmax1 = € and Tpaxe = 00 respectively. The effective signal to noise ratio is
calculated by comparing the Ah(x) = hy(x) — hq(z) power to the noise power
in the regular two-dimensional angular space.

The best decision rule for using only a single direction is obtained when
only the z radius corresponding to the maximum of he(z) — hy(z) is used.

<%>K:1 _ maxx(hg(g%— hi(z)) (44)

- @2)) mx(Y}(/:% ; Yi() (45)

(o) dte e

A typical value for a massive cluster M, = 10'°M,, a = 1.5 and 2 = 0.3 is
(Y2 (Tmax) — Yl(acmaX))2 - 4

Yo ~6.1-10 (47)

T(0)?/o3 = 5900 (48)

implying that S/N =~ 1.9 for the best pixel of the survey. These values
increase when increasing z.

Now if A¢ denotes the smallest angle corresponding to the maximum
resolution of the detection, the number of pixels the cluster covers is approx-

imately ,
S}
= (i) )

Since © = 8.1’ for z = 0.3 for a massive cluster, we expect K = 1.8 -10%
pixels for Ap = 2”7 of ALMA.
For an estimate,

5~ VE (5) . (50)

N N

Explicitly,
EN @ T(mmaXZ) (51)
N~ cAp on

This approximation presumes two things: 1. the signal strength (i.e. the dif-
ference between the profiles with and without a cutoff) in the relevant pixels
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can be estimated with the maximal signal strength, and 2. the number of
such pixels is proportional to the area of the cluster within r, = 1 perpendic-
ular to the line of sight. The radius 7 = 1 (i.e. 7 = 7y;/c) is special in the
sense that the dark matter overdensity is A.(z). It is to be emphasized that
eq. (50) is only a rough estimate, since the deviation of the two profiles are
really sensitive to the region near the edge. Nevertheless, we approximate
the area of this ring around the edge with the area within ry = 1.

For a massive cluster M,;, = 10 M, at z = 0.3 the detection of the edge
at Tmax = ¢ with ALMA has a signal to noise ratio S/N ~ 250. If o = 1
for the same M, and z values, the parameter c is 1.7x larger, T'(¢c) is about
the same as o = 1.5 (while © and A¢ are naturally invariant), implying that
signal to noise ratio decreases by 70%, which is still S/N ~ 150. Larger z
values decrease © but increase T'(¢) in a way that there is a minimum at
z = 0.28. Smaller M,;, has a larger ¢ but a smaller © and T'(c), so that S/N
decreases with M,;,. The edge is most visible for clusters that are closeby
z < 0.28 or faraway z > 0.28, and that have a large M,; and a.

To improve this estimate we should acknowledge that the typical one-
pixel signal strength in eq. (50) is not the maximum given by (44), but the
average of the various 1 pixel signal to noise ratio over the cluster. This leads
to the following approximation

(%)2 _ (T(O))2 [ da’ 271':3;5};;5.(1;))2_ Yi(2))?

(52)

K=1 ON

The average is now taken over a radius range x’ € [0,z]. Let us label the x
dependent part by H(z), so that (S/N)%_, = (T(0)/on)*H(z). Obviously,
the signal to noise ratio depends on the radius range where the surface bright-
ness is measured. Figure 6 shows this dependence for a cluster with o = 1.5
and M, = 10¥Mg (left) and My, = 10¥M,, (right). Substituting the z
value of the maximum of H(x), yields max, H(x) =3.0-10"% and 1.2-107°
respectively. Using a = 1 similarly yields 8.2-10* and 2.5-1075. Therefore,
eq. (52) leads to approximately the same S/N ratio as the original eq. (44).

Interestingly, H(x) does have a maximum, indicating that the consider-
ation of the pixels beyond the maximum might not increase the precision of
the fit, unless the increase in /K compensates the decrement. In the follow-
ing section we will prove that all pixels have to be considered for an optimal
edge detection.
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Figure 6: H(z) is plotted with parameters M, = 10" M (left), 103 M,
(right), and Zmaxa = 100, Tmax1 = ¢, 2 = 0.3, a = 3/2 for both cases.

These estimates all indicate, that the S/N ratio will be significant for
regular clusters for an observation with ALMA.

6.2 S/N with the optimal filter

A measurement of the function y(x) in x; distinct directions yields a discrete
sample y;. where k € [1, K].

Yp = /d% y(x)Wp(x — x) (53)

The set {yx} is an element of a K-dimensional vector space and will be
denoted by y. Similarly, let hy and hy denote the discrete sample of the
hypotheses functions h;(z) and hy(x). In particular, y denotes the measured
SZE intensity profile, whereas h; and hy denote the calculated brightness
profiles with and without a cutoff (using eq. (31) with Zyaa # oo and
Tmax2 = 00 respectively). The vectors hy and hy depend on the parameters
describing the cluster and the cutoff. We now derive the signal to noise ratio
of the test for a given fixed choice of parameters.
If the real signal arriving to the detector was s(x), then the detector
measures the data
y=s+n (54)

where n is the probability variable corresponding to the noise.

Let us approximate the window function with a Dirac-d, i.e. W(x) =
dp(z), and let us assume white Gaussian noise of variance oy. In this case,
the probability of detecting y, given that the incoming signal is s, is the
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following

Ply|s) =

! M} (55)

@m) K2 (oy)K P {‘ 20%,

where the notion of the K-dimensional vectors’ differences and scalar product
was used.

(y—9)" =D (y— 1) (56)

The detection probability involves P(s|y), which can be obtained us-
ing the a priori probabilities P(s) and the Bayes-theorem for conditional
probabilities. Most common decision rules, such as the maximum posteriori,
the Neyman-Pearson, or the minimax decisions involve constraints on the
likelihood ratio.

Py | hi)
W)= Byl ha) o0
Substituting (55) in (57) the log-likelihood becomes

1 hi+h
InL(y) = —— < - ¥> - (h2 — h1) (58)

oN 2

1 1

= (hy—h1)-(y—ha) — ——(ha — hy)?
UJQV( 2—h1) - (y — h2) 20}2\[( 2 — hi) (59)

The likelihood depends on the y — hy component along hy — hq. The term
ho — hq is referred to as the matched filter.
The decision rule can be outlined as follows:

1. Obtain the hypothesis vectors hy and hs from hy(x), he(x) with z =
defining the particular directions of the measurement. The parameters
implicit in the functions hi(x) and he(z) are given prior to the mea-
surement.

2. Set up the desired decision margin for the likelihood ratio. For example,
a natural choice is to choose the margin at L(y) = 0.

3. Obtain y from the measurement.

4. Evaluate L(y) from eq. (59), and choose the decision in favor of h; if
this value is greater than the bound given in 2. above.

Since the noise distribution P(n) is spherically symmetric in the K-
dimensional vector space, it has the same power 0% along any basis. This
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infers that the noise power for the likelihood detection rule is the noise power
for a single bin, i.e.
N? = o3, (60)

Thus increasing the sample size increases the signal power, but leaves the
relevant noise contribution the same.
The signal power is

1
= (ha = n)? = 3 (s — o) = 5 [ sn@ (o

where Ah(z) = hy(z)—hy(z) and Az? denotes the area enclosed by the neigh-
boring z; points. We have assumed that the resolution of the measurement
is fine enough to approximate the sum with the integral'6-'7.
The signal to noise ratio from eq. (60) and (61)
S? hy — hy)?
= = (ha = ha)” 5 ) (62)
N oxN
For a given detector with angular resolution A¢ and a cluster of apparent
angular virial radius © the Az uncertainty is ¢A¢/©. Substituting eq. (61)
in (62) and taking the square root yields

% B Acb(iaN \// dz?[hy(x) — hi(z)]? (63)

We evaluate eq. (63) for Model I and Model II below.

6.2.1 Model I

Here we evaluate an approximation to the signal to noise ratio for Model
I. The signal to noise ratio is calculable with eq. (63) if the parameters
(Myir, 2, 0, T, €, Timax, D) are given for hy(z) and (M, 2, a, Ty, ¢) for ho(z).
We choose realistic parameters, which are substituted for hi(x) to generate
the fiducial model. For this section, the parameters used for both hypotheses
are assumed to equal the correct values. This is only an approximation,
nevertheless we anticipate the difference in Ty and ¢ of he(x) and hy(z) will

16The Ah peak will be rounded off for finite resolutions (fig. ??) leading to
a decreased signal power value!
'"The integral domain is approximated by a plane, since typically © < 1°.
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be sufficiently small for this assumption to be reasonable. The general case
with unequal parameters for h; and hy will be discussed in section 6.3.

S @(Mvim Z) TS

2o A E) s a2y (x) — Yi(x))2 4

N (M, 2)A¢pon \// w¥e(w) = M) (64
My | 2z | o | © | ¢ T, T0) | Tmax2 | Tmax | D || S/N | S/N
(M) [] [ 22 e 72 O 1 R S
108 03| 1 {1879 18 22 4.3 1 0.01 | 0.53 | 0.71
102 | 03| 15| 1.7 |46 16 27 4.4 0.01 | 0.56 | 0.77

1

10 03] 1 [38]5.0 97 130 4.9 1 ]0.01| 16 17
10" 10.3]1.5]38|29| 1100 160 5.0 1 1001 16 19
10 03] 1 |81]3.1] 560 780 5.5 1 10.01 | 470 | 440
10" 1 0.3 | 1.5]81|1.8]| 7000 910 5.6 1 10.01 | 480 | 470

Table 3: Typical cluster parameters and S/N ratios for detecting the edge

We evaluated eq. (64) for various (Myi, 2, @, Ts, ¢, Tmax, D). The results
are listed in table 3 and plotted on fig. 7. The concentration parameter c
and the angular radius © were chosen in accord with eq. (12) and (20) in
a particular cosmology. Notice, that the signal to noise ratio obtained here
equals the result of the heuristic calculation eq. (50) with the average one-
pixel signal to noise eq. (52). Now, the result was obtained from eq. (62),
which shows clearly that all pixels of the survey has to be considered, even
though the low power pixels reduce the one-pixel average.

Table 3 gives a list of the signal to noise ratios for the typical cases. The
variation caused by changing xn.x, D, and z are plotted on fig. 7. The
main feature is that the S/N quickly increases with M but is practically
invariant for different . The figures show that S/N decreases with Zax,
it is nearly constant when changing D, and it has a minimum in terms of
z. The last two observations are slightly counterintuitive: cluster edges are
equally visible for smeared edges, and cluster edges are more visible for the
farthest clusters even though they are smaller.

The former can be explained with recalling the definition of the cutoff.
Increasing the D parameter does not change the total cluster SZ intensity. If
the cutoff shape is known exactly prior to the observation, as it is assumed in
this section, increasing D (while fixing T5) does not come closer on average
to the profile without a cutoff.

To explain the second peculiarity, the S/N increase with z, we plotted
the z dependence of the relevant factors on fig. 8. Although the angular
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radius © decreases (bottom right), the central temperature 7'(0) (top right)
and the concentration parameter (bottom left) reciprocal 1/c increases. Note
that eq. (64) uses the temperature scale Ty = T'(0)/Y (0) (top left) instead
of T'(0), but this also increases with z. The increasing terms dominate for
large redshifts. In other words, the faraway clusters are more intense and
have a higher contrast, which makes the edge visible even though the cluster
appears smaller. For even larger redshifts, the signal to noise ratio is expected
to have a cutoff, since then the observation window function can no longer
be approximated by a Dirac-0.

10— 110

| S —— o

S

| | | | | | | |
o 0 o 0 ; 7 ;

S
=
T
\

| | | |
o i} £

Figure 7: The signal to noise ratio for various cluster masses as a function of
Tmax (top left), D (top right), and z (bottom center). Each curve has only one
parameter changing, the other fixed parameters correspond to those listed in
the first six lines of table 3. The solid lines trace o = 1.5, the dotted lines
show o = 1. The signal to noise ratio is mostly independent of o and D, it
increases with M,;, and z and decreases with z ..
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Figure 8: The parameters Ts/mK (top left), T'(0)/mK (top right), ¢ (bottom
left), and © (bottom right) for various cluster masses and « as a function
of redshift. Each curve has only one parameter changing, the other fixed
parameters correspond to those listed in the first six lines of table 3. The
solid lines trace a = 1.5, the dotted lines show o = 1. The red curves have
10 M), the blue curves have 10“M,, and the green curves has 10 M
virial mass. The © angular radii are independent of «, so the dotted and
solid curves completely overlap.

This cutoff is not depicted on the graphs, it is anticipated to dominate when
© ~ A¢. For the ACDM cosmological model the angular radii of clusters
does not decrease to zero, it approaches finite values: lim, ., ©(z) = 10.4”,
22.47 or 48.4” for clusters with low, medium, or large mass. Therefore, the
A¢ = 27 ALMA resolution is fine enough to see cluster edges at arbitrary
redshifts.

In conclusion, medium to large mass clusters’ edges should be clearly
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observable with ALMA, as long as the edge is located near the virial radius.
If the density cutoff is farther in the outer region, the edge will only be
observed for the large mass clusters with M > 10*M,;.. The detection will
be independent of o, z, and D.

6.2.2 Model 11

For Model 11, the T temperature is obtained from .., which is unequal for
the two hypotheses. From eq. (63) we get

S O(Myy, 2) , [T, Ya(2) — T Yi(2)]?
N C(Mvir,z)Aqﬁ\// de l oN (65)

Eqgs. (64) and (65) corresponding to Model I and II can be compared
with figs. 3 and 4, which plot the integrand of the two cases.

Table 3. compares the signal to noise ratio results for Model I and II.
The Ty value for Tyaye was recalculated to substitute in eq. (65). The
two models lead to approximately equal S/N detection ratios. This is not
surprising since the parameter sets adopted in table 3, correspond to the
fiducial model in accord with the relationships ¢(My, z, @) and ©(My, 2)
(egs. (12) and (20)). Model I and II will only be different, if there is a
significant variance in the parameters around their calculated values.

Assuming that the noise is uncorrelated and Gaussian for different fre-
quencies, measuring at many different frequencies the signal to noise ratio
can be substantially higher.

6.3 The random distribution of S/N

One difficulty with the decision rule and signal to noise ratio discussed above
is that the parameters are unknown prior to the measurement. Assume
that the original signal (i.e. without noise) is h; with parameter p. The
measurement

y=hi(p) +n (66)

can be used to give an estimate of p. Denote the estimated parameter'® of h;
by p; and the estimated parameter of he by ps. Once the parameters have
been obtained, hq(p;) and ha(py) can be fixed at the corresponding values.

18The least squares fit method for obtaining the parameters is relevant if the apriori
distribution in the parameter space is assumed to be uniform.
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Then the decision rule for fixed parameters can be used.

i) = - (v PP ) - o)) (o)

T2
ON

If the apriori probabilities of the parameters are uniform, then the likelihood
margin can be chosen independent of y. If additionally, the apriori probabil-
ities of the hq(p;) and ha(py) are equal, then the likelihood margin can be
chosen at L(y) =0. ¥
Since p; is obtained by minimizing (y—hy(p1))?, the distribution of hq(p;)
from (66) is
hi(p1) = ha(p) + Ay (68)

where p is the real parameter of the signal without the noise and A; is approx-
imately a Gaussian random variable on the manifold H; = {h(p1) | p1 arbitrary}.
A has variance dim Hiop.
Similarly, p, is obtained by minimizing (y — ha(p2))?. The distribution
of ha(ps) is
ha(p2) = h2(p') + Az (69)

where p’ is the parameter value at which (hy(p) — ha(p'))? is minimal. Ay
is defined by eq. (69). It can be shown that it is approximately a Gaussian
random variable?® on the manifold Hy = {ha(p2) | p2 arbitrary}, with vari-
ance v/dim Hyon. Note that A; and A, is strongly correlated since both
values are derived from the measurement y.

The signal power

SZ = (hz - h1)2 (70)

is therefore a random variable. Let us define the empirical, most probable?!
and expected signal powers by

SeQmp = (h2(p2) — h1(p1))® (71)
Sg = (hz(p,) - hl(p))2 = Hlljin(hz(pz) - hl(p>)2 (72)
Seep = (Somp) (73)

9An equivalent realization of the decision process from a different perspective is the
following. Take the sets H; = {hq(p1) € R¥|p; arbitrary} and Hy = {ha(ps) €
R¥ | py arbitrary} which are manifolds in the K-dimensional manifolds. Take the set
M = {z € RX|L(y,p1,p2) = k; with p; and po arbitrary}. M is a K — 1=dimensional
manifold. This separates the K-dimensional vector space into two disjoint regions R; and
Rs. Now iff the measurement y is in R1, the decision is made in favor of h;.

20The approximation is valid if Ho is nearly a linear subspace in R¥, i.e. its curvature
is much less than the uncertainty /dim Hoop.

2IThe estimated parameters have a Gaussian distribution around p and p’. The term
“most probable” refers to the parameter distribution not the signal power distribution.
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The expected signal power can be written in terms of Sy using eq. (68)
and (69)

Serp ((ha(p) — ha(p)) + Ag — A1)*) = S5 + ((Az — A1)?)
= S3 + (A3) + (A2) —2(A;A,)
= S2 + (dim H, + dim Hy)o% — 2(A1 Ay)
= S2 + 20% — 2cos(p)*o;

where in the last line we have assumed that H; and Hs are one dimensional
and the scalar product of the corresponding normal basis vectors is cos(¢).
This term can be obtained, for given hy and hy hypothesis functions by

o= (S5 () () o

In general for any (hq, ha) we have

S < S2 < S2 4 (dim Hy + dim Hy)o3, (79)

erp —

The noise power for choosing between hy and hg (with an arbitrary p;
or po) is the variance of the measurement along ha(ps) — h1(p1), since the
likelihood ratio (67) depends on only this component. Therefore

2 _ hz(p2) (Pl)
N [th(m) R ()]

_ o2 2(p2) hl( ) . ’
-~ (e o &) o

(y- h1<p1>>] ) (80)

The first term is the statistical error, whereas the second term describes the
systematic error resulting from the uncertain estimation of the parameters.

For large signal to noise ratios this can be approximated to lowest order in
Aq.

2 _ 52 ha(p') — ha(p) ) ’
¥ =t (o 2] )
= o+ ((cos0))% (83

where 6 is the angle between the vector ha(p') — h1(p) and hq(p1) — h1(p).
In general for any (hq, hs)

012\, < N?< 2012\, (84)
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In particular for the SZE brightness hypotheses, H, C H;, with H; having
two additional parameters. In this case, it can be shown that ((cos0)?) ~ 1/3
independent of p.22 Therefore

4
N? = 50]2\, (85)

Although the expected signal to noise ratio can be calculated explicitly
for a given parameter choice using eq. (77) and (85), it is useful to define
its the theoretical bounds independent of the given form of the hypotheses.
Comparing eq. (79) and (84), we get

2
S2 < Sewp St

0 . .
ﬂ_ N2 §%+d1mH1+d1mH2 (86)

where Sy is given by eq. (72). The high bound is approached when H, tends
to be parallel to Hy, the low bound is approached when H, is orthogonal to
H, near Hy(p) and Hs(p').

For the most general case considered in this paper, hy depends on pa-
rameters (M, 2, a, T, ¢, Tmax, D) and he depends on (M, 2, v, T, ¢). Since
M., z, and « is assumed to be fixed, only 4 and 2 parameters are free in the
two cases, respectively. Therefore the additive factors of eq. (86) are simply
dim H; 4+ dim Hy = 6. Using (84) we get

352 S, 382
L Qi Qe 87
40% — N? _40']2V+ (87)

For a conservative estimate we shall use the low bound. Substituting Sy from
its definition, eq. (72)

Ocn _ 3 ninlha(pe) — ha (@) (89)

N2 40']2\7 P2

This should be compared with eq. (62) describing the signal to noise ratio
for fixed parameter values. The difference is the 3/4 factor and the min,,
function over the p, parameter space. If the parameters describing the cluster
are p = (M, 2, @, T, ¢, Tyax, D) then the best fitting he hypothesis will have
parameters p’ = (M, z, o/, T., ¢') generally different from the true values.
The result (88) can be written in terms of the original continuous func-
tions hy(z) and ho(x). For a given detector with angular resolution A¢ and

22The reason this is not an exact equality stems from the fact that H, is not a complete
linear subspace. It is curved and is constrained (0 < D < Zpax)-
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a cluster of apparent virial radius © the smallest detectable length scale is
Az = cA¢/O. Converting the sum to an integral,

S?2 3
erp 9 B )
N2~ aAg / da’[ha(w, p2) = ha(,p)] (89)
30 [, 2
~ Rz min [ drlhae.pr) ~ ha(e.p) (%0)
N 2

Taking the square root of the equation

Se:cp . 2
N = 2 AgbcaN H;;n \//dx [ha(z, p2) — hi(x, p))? (91)

Eq. (91) measures the probability that the edge of the cluster is observ-
able. Again, the angular radius © and the concentration parameter ¢ can
be obtained theoretically for given M,;, and z in a particular cosmology by
eq. (12) and (20). Eq. (91) can be calculated for a given parameter set,
substituting eq. (31) brightness profiles for hy(x,p) and hy(z, p2).?

ZEq. (31) describes the profile without an edge, (i.e. ha(x,p2)) when taking xmax > ¢
and D = 0.
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Figure 9: The py = (Ts2, c2) parameter dependence of the S/N ratio for de-
tecting the edge for (M, z, ) = (103 M, 0.3,1.5) and 6 choices for (2yax, D).
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Figure 10: The py = (Ts2, c2) parameter dependence of the S/N ratio for de-
tecting the edge for (M, z, ) = (10 M, 0.3,1.5) and 6 choices for (zyax, D).
Notice the multiple minima on the top panels.



M=15z=03, a=1.5, mma=c, D=0.01c, 2=T"T, y=c'/c M=15z=03, a=1.5, xmax=c, D=0.5¢c, :=T"T, y=cVc
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Figure 11: The py = (Ts2, c2) parameter dependence of the S/N ratio for de-
tecting the edge for (M, z, ) = (10 M, 0.3,1.5) and 6 choices for (zyax, D).

Figs. 9, 10, and 11 show the fractional deviation of the empirical signal



to noise ratio as compared to the fiducial value in Model I for various ps
parameters. The best fitting p, parameter is at the minimum points. The
V/3/2 factor decrease because of the increase in the average noise power is
not plotted for clearity. Thus, the plots assume the value 1 at the fiducial
parameters. The numerical result presented in the last section on table 3 and
fig. 7 considered hy parameter values that were equal to the corresponding
h, parameter values. Figs. 9, 10, and 11 use the fiducial model with p =
(Myir, 2, 00, ¢, T, Tiax, D with (z = 0.3, = 1.5) and 18 different choices
for (Myix, Tmax, D). The (c, Ts) fiducial values were calculated with eqs. (12)
and (41). The py parameters had the same (M., 2z, a) but (T, ¢) were varied
relative to the fiducial values. The signal to noise results listed in the previous
section (table 3 and fig. 7) are true within a factor of 0.95 x v/3/2,0.9 x
V3/2,0.5 x v/3/2 for My, = 103 M), 10" M, 10'° M, respectively. The the
edge detection probabilities remain significant for M = 10 M, but become
marginal for mid size clusters. The most interesting feature shown on figs. 9-
10 is that the best fitting parameter values can deviate greatly off the fiducial
parameters. In addition, the S/N of particular clusters have saddle points
and multiple local minima in terms of the p, parameters. This is the case
for My, = 10 M, where the local minimum near p, = p is not global, as
the global minimum (77, ) is at a much larger SZ temperature and a much
smaller concentration.

6.3.1 Locating the minimum — obtaining p’

Finding the minimum value in Hs parameter space in general can be com-
putationally tedious. However, as 10 panels of figs. 9 and 10 display, the
numerical value obtained naively by

p’(o) = (o, T, ) = (o, T}, ¢) (92)

is a fair zeroth approximation in most cases.?* A better approximation can
be obtained by expanding [ha(ps) — h1(p)]? to second order around p'® and
finding its minimum in terms of p,.

(ha(p') = ha(p))* =(ha — k1) + 2(Opha) - (hz — ha)zy+

where z; = p'® — p'© and

_ Oha(py)

Oihy = 94
jlo2 aij ( )

24The o parameter will not be varied, o/ = « is assumed throughout this study.

43



On the RHS it is assumed that hs and its derivatives are evaluated at the
naive value p'¥). Let us denote the quadratic coefficient by

Myj = (Orhz2) - (Ojhz) + (h2 — hi(p)) - OOjha (95)

Since p’ denotes the minimum value, the z;, derivative of eq. (93) must vanish

aixk(hz(ﬂ) - hl(p))2 ~ 2(Oxhz) - (h2 — hy) + 2My;x; =0 (96)
Since z; = p' () — 9/ the solution of this equation gives the next approxi-
mation of p’. Eq. (96) is solved by inverting the coefficient matrix. Thus

P =i = My (9;ha) - (ha — ha(p)) (97)
;(1) is the improved approximation of the k" parameter of p’. Note that the
I~dependence of the hypotheses is linear, implying Or, ha(p2) = ha(ps, Ts =
1) and 0F ha(p2) = 0 for all p,. The « and ¢ parameter derivatives are to be
calculated numerically using eq. (31). This way, finding the minimum in eq.
(88) is simplified to evaluating parameter derivatives of the ho function at
only p'®.

Figs. 9, 10, and 11 show how the best fitting p’ parameters are related to
the naive choice p. The S/N function has a minimum at p’. Finding the crit-
ical point with eq. (97) yields the correct global minimum for (Mg, z, o) =
(1013My, 0.3, 1.5) for any (Zmax, D) and (10 M, 0.3,1.5) for any (Tmax, D)
unless Tpay ~ c. However, for (M, 2, @, Tmax) &~ (1010, 0.3,1.5, ¢) there
are multiple local minima and saddle points. The p/ = p'") approximation of
eq. (97) yields the local minima in the vicinity, which is not the global min-
imum. For (M, z,a) = (10Y°My,0.3,1.5) and arbitrary (T, D), the p'®
value corresponds to the saddle point. Again, the p’ = p'™) approximation
of eq. (97) breaks down.

The saddle points can be identified by calculating det M; ;

> (0 iff py is at a local minimum or maximum

det M;;(p2) < 0 iff py is at a saddle point

(98)
since M;; is a 2 X 2 matrix and it is well-defined everywhere in the parameter
space. The saddle point can be eluded if det M is calculated and a step is
made towards p'" only if det M > 0. If it is negative, then a step is made
"downhill” along the negative gradient —2(Jxhz) - (ha — hy).

Repeating eq. (97) or the downhill steps locates the local minimum near
the fiducial parameter value p. Figs. 9, 10, and 11 indicate that this algo-
rithm leads to the correct p’ value for the 16 of the 18 cases considered on
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the plots. Only the fiducial parameters p = (M, 2, a) = (101 M, 0.3, 1.5),
with (Zmax, D) = (¢,0.01¢) or (¢, 0.5¢) have non-global minimum in the close
neighborhood of p. In this case, the minimum can be obtained with a manual
input of (Té(o), dO)) = (2T%,0.2¢), thereby eluding the local minimum.
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7 Parameter estimation

In the previous section, we have examined the signal to noise ratio for the
hypothesis test. The primary aim of the test was to make a distinction
between the possibilities, that the cluster does or does not have an edge.
Another problem is to examine the precision of the parameter estimation of
h, itself. We calculate the uncertainty of the parameter estimation with the
Fisher matrix.

In this section we assume that the real signal is hy, with associated p;
parameters. Now let us suppose that a signal y arrives, and with no prior
information, a parameter p; is to be chosen that best describes the data. Due
to random noise, the measurement yields a parameter estimator with some
uncertainty. The parameter estimator can be obtained with the maximum
likelihood test. The likelihood function is

2
exp (_ [y B hl(p)] ) (99)

2
20%

L(y,p) = P(y| ha(p)) =

1
V2T
and the log likelihood

[y — hi(p)]”

2
20%

InL(y,p) = — (100)

The parameters are chosen to maximize L(y,p), or equivalently to apply
the least squares fit. The quantity

5% = [hi(p1) — hl(p)]2 (101)

has a x? distribution in terms of hi(p1). Taking the noise power to be the
noise in a single bin, N? = o%, the false signal to noise

S V/[ha(p1) — ha(p)]?
== = (102)

Eq. (102) is closely related to the x-statistic that the parameter estimator
is p; instead of p, the true value. Given a p true parameter set, the region
within 20 confidence (95%) for example is the set {p; € H;|S/N < 2}.
Thereby evaluating eq. (102), the precision of the parameter estimation can
be readily read off. Figures 12, 13, and 14 depict this precision for various
p true values. The contour plots have p; = (M, 2, a, T, €1, Tmax1, D1) with
(r(max1), D;) varied, while all other three parameters are fixed at the true
value.
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Figure 12: The parameter dependence y-contours for (M, z,«a) =
(1013M,0.3,1.5) and 6 choices for (Zmax, D). The top left corners, where
D > x,.«, were not calculated.
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Figure 13: The parameter dependence y-contours for (M, z,«a) =
(101"M,0.3,1.5) and 6 choices for (Zmax, D). The top left corners, where
D > x,.«, were not calculated.
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Figure 14: The parameter dependence y-contours for (M, z,«a) =
(10¥°M,0.3,1.5) and 6 choices for (Zmayx, D).
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The Fisher information matrix is

_<821DL(y,p)> . 1 6h1 (9h1
Yy

[l ]

= - — 103
0']2\[ 8pi 8pj ( )

The finite sum can be approximated with the integral formula for a sen-
sitive observation.

2 Tmax+D
0

Irlp) = (E o, op,

Assuming that the likelihood distribution is Gaussian near the peak like-
lihood, we can use confidence limits for Gaussian statistics (i.e., x?) to obtain
68% and 95% confidence regions.

The minimum expected variance is related to the Fisher matrix with the
Cramer-Rao bound

(Ap;)? > (1Y) (105)
where equality holds if the distribution is well approximated with a Gaussian
distribution.

Tables 5 and 4 show the 68% and 95% significance uncertainties for Model
I and IT as calculated from the Fisher matrix. The calculations indicate
that the uncertainties are nearly the same for Model I and II regarding
Tmax and D. The Fisher matrix itself is decoupled in the corresponding
subspaces, as the (Zmax, Ts), (Tmax,¢), (D,Ts), (D, c) components are neg-
ligible compared to the diagonal elements. The variance in the parameter
estimators are (Ac/c, AT, /Ty, ATmax/Tmax, AD/c) = (3%, 7%, 3%, 13%) for
(Myir, 2, 0, ¢, Ty Tiax, D) = (101 M, 0.3,1.5,5,0.1mK, ¢, 0.01c). Therefore c,
T, and x. will be precisely obtained with ALMA for the majority of the
clusters, while similar precision for D is possible for only massive clusters.
Let us point out, that it is possible to deduce the a parameter from the c(a)
relation. Table 5 shows, that the decision significance will be well over 95%
even for clusters as small as M,;, = 1013M. Therefore, the observation with
ALMA will surely end the controversy between the two possibilities for «.

Figures 12, 13, and 14 depict the likelihood contours for Model II with
the direct evaluation of eq. (102), without the Fisher matrix approximation.
The 1o contours are well-approximated with ellipses, if D — AD > 0 for
My > 10" Mg, e.g. D > 0.1, Tax < 1.7¢, and My, > 101 M. Therefore,
in these cases, the inequality (105) assumes the equality for the parameter
uncertainty. The parameter distribution around D =~ 0 is distorted, and
higher confidence level contours for arbitrary D are banana shaped in the
Tmax — D plane.
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My | 2 | o | © | ¢ T, T(0) | Tmax D S
[M)] ] [—pK] | [-pK] | [d [ | %

108 103 1 [1.8]79] 18 22 1 0.01 || -
- - - - - - - 0.73 3.3 | 68

- - - - - - - 1.5 6.6 | 95

108 10315 |1.7] 4.6 16 27 1 0.01 -
- - - - - - - 0.73 3.3 | 68

- - - - - - - 1.5 6.5 95

10 103] 1 [3.8]5.0 97 130 1 0.01 -
- - - - - - - 0.028 | 0.13 || 68

- - - - - - - 0.055 | 0.26 | 95

10 [ 03]1.5)3.8(29] 1100 160 1 0.01 -
- - - - - - - 0.027 | 0.13 | 68

- - - - - - - 0.054 | 0.26 | 95

10 03] 1 |81[3.1] 560 780 1 0.01 -
- - - - - - - 0.001 | 0.005 || 68

- - - - - - - 0.002 | 0.010 || 95

10 1 0.3 |15 (81| 1.8 | 7000 910 1 0.01 -
- - - - - - - 0.001 | 0.004 || 68

- - - - - - - 0.002 | 0.008 || 95

Table 4: Parameter variance, Model II

My | 2 | o | © C T, T(0) | Tmax D S
[Mo)] ] [—pK] | [=pK] | [d] [ || %
10 03] 1 [1.8] 7.9 18 22 1 0.01 -
- - - - 1.0 15 12 0.76 3.3 || 68
- - - - 2.0 30 24 1.5 6.6 || 95
108 1031517 | 4.6 16 27 1 0.01 -
- - - - 0.80 132 22 0.76 3.3 || 68
- - - - 1.6 264 45 1.5 6.6 || 95
10 03] 1 |38 5.0 97 130 1 0.01 -
- - - - 0.14 6.4 4.8 0.029 | 0.13 || 68
- - - - 0.29 13 9.6 0.058 | 0.27 || 95
10 103 ]1.5(38] 29 | 1100 | 160 1 0.01 | -
- - - - 0.11 67 9.6 0.028 | 0.12 || 68
- - - - 0.21 133 19 0.056 | 0.26 || 95
10 103| 1 [81] 3.1 560 780 1 0.01 -
- - - - 10.014 2.3 1.6 0.001 | 0.005 || 68
- - - - 10.027 4.6 3.2 0.002 | 0.010 || 95
10 1031581 1.8 7000 910 1 0.01 -
- - - - 10.011 28 3 0.001 | 0.004 || 68
- - - - 10023 3b 7 0.002 | 0.008 || 95

Table 5: Parameter variance, Model I
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Figure 15: The Azuyax (left panels) and AD (right panels) variances are
shown for various Zmax (z-azis) and D values (y-azis). Model IT Fisher matrix
was used, with (z,a) = (0.3,1.5) and M, = 103,10 10 M. The units
are ¢ (with the appropriate Model IT value).
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Figure 16: The Azpax (left) and AD (right) uncertainty for various z. Model
1T was used, and the virial mass was taken 10'® (red), 10* (blue), and 1015- M,
(green). The units on are ¢ (with the particular Model II value).

Figures 15 and 16 give an overview of the Az, and AD variances for
various parameter choice. These plots were calculated using the Fisher ma-
trix. The plots show that increasing x,.x increases the uncertainties A .y
and AD, while increasing D only slightly increases Az, and leaves AD
unchanged. These plots correspond to various M, choices, but use fixed
values for z = 0.3 and o = 1.5. The z and a dependence is plotted on 16.
It is clear, that the o parameter does not alter the Az,., and AD uncer-
tainties. Changing z yields a maximum in Az, and AD around z = 0.4.
The parameter uncertainty decreases by a factor of 10 for 2 =~ 0 or z = 3
compared to the z = 0.4 value.
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& C(Conclusions

We have shown that the near-future Atacama Large Millimeter Array (ALMA)
is well-suited for studies of the intra cluster medium density distribution using
the Sunyaev-Zel'dovich (SZ) effect. The angular beam diameter and sensi-
tivities are predicted to reach 2”7 and 10uK for this system, which exceed
present detector resolutions with more than two orders of magnitude. A rich
galaxy cluster observed at 100 GHz for 30 hours yields a SZ signal-to-noise
ratio that is high enough to make inferences about the barionic and dark
matter distributions. We showed that the ALMA detector will be capable of
judging whether the current assumptions on the cluster physics need to be
revised.

The hydrodynamic equations were solved for the self-similar gas density
in the dark matter background. The dark matter profile was parameterized
with «, and every calculation was evaluated for both values common in the
literature, i.e. @ = 1 and 1.5. Within this framework, the resultant density
profile as a function of radial distance is small but nonzero even in the faraway
regions. As a modification, we introduced a hypothetical linear cutoff in the
density profile, where the density falls to zero within a finite radial distance.
This assumption is consistent with the theory of cluster evolution (see [14|
and [15]).

We have calculated the change in the SZ image of the cluster with the
ALMA detector. We assumed 10pK flat-power Gaussian noise. We con-
structed the optimal filter matched to the self-similar cluster density model.
The corresponding likelihood function was used to see whether our fiducial
model with an edge can be distinguished from the original model without
an edge. It is important to emphasize that this test is practically model
independent, since it is only weakly sensitive to the central region, but this
sensitivity is significant in the outer region, where the various cluster models
in the literature are identical. We calculated the signal to noise ratio in two
ways, with 4 (Model I) and 2 free parameters (Model II), respectively. These
parameters are the radial distance of the edge, z.x, the length of the cutoff,
D, the concentration parameter, ¢, and the central temperature decrement,
T(0), for Model I. For Model II, ¢ and T'(0) were calculated from theory
assuming no scatter around the correct values. Other parameters, such as
the virial mass, M,;,, the redshift, z, the dark matter exponent, o, and the
virial angular radius, ©, can be measured to a higher precision and were not
varied. The results are within 10% for Model I and Model II. The signal to
noise ratio is 470 for a rich cluster of virial mass 10'®> x My and it is 16 for
a regular cluster with 10'* x M. The parameters such as ¢ and T'(0) were
assumed to be the correct values for both models with and without a cutoff.
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Next, a more realistic case was considered, when the parameters of the
cluster with and without an edge are fitted independently for a given mea-
surement. As it turned out, there is a large systematical error in parameters
c és T(0) for the model without an edge, provided that the cluster does have
an edge within approximately one virial radius. Nevertheless, the signal to
noise ratio decreases only by 56% at most for detecting the edge. Therefore,
the edges remain visible for normal and rich clusters.

Finally, we examined the precision of the parameter estimation of the
model with an edge. As a result, typical values for normal and rich clus-
ters are (Ac/c, AT(0)/T(0), Axmax/c, AD/c) = (2.8%,3.7%, 2.9%, 13%) and
(0.45%,0.2%,0.1%,0.5%), respectively. Since there is a one-to-one corre-
spondence between ¢ and «, with ¢(a = 1)/c(a = 1.5) = 1.7, the SZ effect
is capable to decide which a model best describes reality. The controversy
between the two dark matter profiles will be solved. Measuring the SZ ef-
fect with ALMA will not only detect the cluster’s edge, but it will be able
to locate it with a high precision. This information will surely improve our
understanding of the structure of matter within the clusters.
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